
Programmer’s Guide

Perfect Address
Software Developer’s Kit

COPYRIGHT © 1996-2010 CD LIGHT, LLC
ALL RIGHTS RESERVED

January 2010

CD Light, LLC
dba. ZipInfo.com
230 N Tranquil Path Dr
The Woodlands TX 77380-2758
Voice: 281-292-3270
Fax: 281-292-3608
Email: support@zipinfo.com

Table of Contents

Introduction .. 1 - 1
Overview .. 1 - 1
The Address, Please .. 1 - 1
CASS Certification .. 1 - 2
What’s Included .. 1 - 2
How Does Address Matching Work? .. 1 - 2
Retrieving Additional Address Information 1 - 4
Summary .. 1 - 4
Royalties .. 1 - 5

Copyright, Limited Warranty, and License Agreement .. 2 - 1
LIMITED WARRANTY .. 2 - 1
LICENSE AGREEMENT .. 2 - 2
REVISION of Perfect Address SDK .. 2 - 3

Installation .. 3 - 1
Initial Installation .. 3 - 1
Installing "split" data files .. 3 - 1
Using UNC Path Names .. 3 - 2
Using the Windows Registry .. 3 - 2
Update Installation .. 3 - 3

Passing DLL Parameters .. 4 - 1
Passing String Parameters to the Search Engine 4 - 1
Visual Basic and MS Access Pass Strings "ByVal" 4 - 1

SDK Functions .. 5 - 1
UNZ_INIT_EX() .. 5 - 2
UNZ_INIT() .. 5 - 3
UNZ_TERM() .. 5 - 4
UNZ_CHECKADDRESS() .. 5 - 5
UNZ_CHECKLASTLINE() .. 5 - 8
UNZ_CHECKZIP() .. 5 - 9
UNZ_GETSTDADDRESS() .. 5 - 11
UNZ_GETSTREETPARTS() .. 5 - 12
UNZ_GETSTREETNUMBER() .. 5 - 13
UNZ_GETSTREETNAME() .. 5 - 14
UNZ_GETSECONDARY() .. 5 - 15
UNZ_GETCITYSTZIP() .. 5 - 16
UNZ_GETCITY() .. 5 - 17
UNZ_GETSTATE() .. 5 - 18
UNZ_GETZIP() .. 5 - 19
UNZ_GETDPBC() .. 5 - 20
UNZ_GETCONGDIST() .. 5 - 21
UNZ_GETCOUNTY() .. 5 - 22
UNZ_GETCNTYFIPS() .. 5 - 23
UNZ_GETAREACODE() .. 5 - 24
UNZ_GETTIMEZONE() .. 5 - 25
UNZ_GETADDRRANGE() .. 5 - 26
UNZ_GETADDRESSFLAGS() .. 5 - 27
UNZ_GETSTATS() .. 5 - 29
UNZ_GETMATCHCOUNT() .. 5 - 30

UNZ_GETMATCHADDR() .. 5 - 31
UNZ_GETADDRCOMP() .. 5 - 32
UNZ_GETSTREETCOUNT() .. 5 - 34
UNZ_GETSTREETITEM() .. 5 - 35
UNZ_GETERRORTEXT() .. 5 - 36
UNZ_GETADDRESSTYPE() .. 5 - 37
UNZ_GETZIPTYPE() .. 5 - 38
UNZ_GETFIRSTCITYNAME() .. 5 - 39
UNZ_GETNEXTCITYNAME() .. 5 - 40
UNZ_GETFIRSTADDR() .. 5 - 41
UNZ_GETNEXTADDR() .. 5 - 42
UNZ_GETZIPCOUNT() .. 5 - 43
UNZ_GETZIPITEM() .. 5 - 44
UNZ_GETZIPCITYCOUNT() .. 5 - 45
UNZ_GETZIPCITYITEM() .. 5 - 46
UNZ_GETCITYSTATECOUNT() .. 5 - 47
UNZ_GETCITYSTATEITEM() .. 5 - 48
UNZ_ERROR() .. 5 - 49

Development Environment .. 6 - 1
Initialization Woes .. 6 - 1
Memory Leaks and Other Problems .. 6 - 1
Upper Case and Mixed Case .. 6 - 2
32-Bit Considerations .. 6 - 2
DLL Function Names Require Upper Case 6 - 3
Name mangling .. 6 - 3
VC++ Project Options .. 6 - 3
DLL Return Codes .. 6 - 3
Preferred, Approved, and Non-Approved City Names 6 - 8
Address Matching Rules .. 6 - 8
Multiple Address Matches .. 6 - 9
Private Mailboxes .. 6 - 10

1 - 1Introduction

Introduction

Overview

The Perfect Address Software Developer’s Kit (SDK) performs address verification, address correction and
standardization, and supplementary address information retrieval under the control of your custom or commercial
program. You can think of the SDK as a general purpose address matching toolkit, which adds address matching
functions to your program. These tools make it easy for your program to perform address verification and correction
in the context of your operating environment, whatever that might be. The SDK alone cannot process all of the
records in your database, because it has no knowledge of your particular database organization or structure.
Likewise, it cannot capture an address from a user interface or display a corrected address to an operator because it
has no knowledge of your particular data entry environment. We designed the SDK as a general purpose address
matching toolkit which can be combined with all types of custom and commercial Windows programs in many
different environments, to provide a complete address matching solution. Its uses are limited only by your
imagination!

You can use the Perfect Address SDK in many different ways. The two most common applications are (1) to update
all addresses in a database in a “batch” mode, and (2) to verify individual addresses interactively in an “on-line”
mode. An example of a batch application: you have an MS Access 97 database of 10,000 customers whose addresses
you want to correct and standardize in a single programming “batch” run. An example of an interactive application:
you have operators taking orders over the telephone. You want to verify, correct, and standardize each customer’s
address interactively while the customer is still on the phone.

The SDK performs well in either application, but it does not provide a complete solution in either case. You must
provide the primary computer program to connect the SDK to your operating environment, whatever that might be.
That primary computer program could be a commercial, “off-the-shelf” program such as MS Access, or it could be a
custom program written by your programmers or a consultant.

The SDK can be directly integrated with many commercial programs either for cleaning up an entire address
database or to process addresses as they are collected. Most commercial database programs, including MS Access,
Visual FoxPro, Visual Basic, Paradox, etc., provide the programming “hooks” necessary to call the Perfect Address
SDK. This makes it relatively easy to incorporate address matching into applications written for these commercial
products.

The Address, Please

The SDK processes only one address at any time. Your program must extract each address from your database or
from a data entry form, pass the address to the SDK for address verification, retrieve the corrected address from the
SDK, and then update your database or display the corrected address to an operator, as you wish.

The SDK provides a search engine module which you call from your commercial or custom program to access the
Perfect Address national address database files on CD-ROM (or hard disk). The search engine module is
implemented as Windows Dynamic Link Library (DLL). If your program can call standard Windows DLLs, then it
should be able to successfully call the Perfect Address search engine DLL.

In addition to address verification, the search engine also provides the following information about each address:

1. County name and county FIPS code (resolved to the street address)
2. Area code (resolved to the 5-digit ZIP code)
3. Time zone and daylight savings time flag (resolved to the 5-digit ZIP code)
4. Congressional district (resolved to the street address)

1 - 2 Introduction

5. Delivery Point Bar Code (DPBC) digits (resolved to the street address)

In the event of multiple matching addresses, the SDK provides for retrieval of all matching addresses for possible
display to a human operator for final address resolution.

CASS Certification

While not actually CASS certified for postal discounts, the SDK does meet or exceed all applicable US Postal
Service address matching requirements. The Perfect Address address database has no usage limits, and does not
automatically "expire" after 60 days, as do all CASS certified address matching products. You can use the SDK and
its address database as long as you find it useful. However, monthly, quarterly, and semiannual subscriptions are
available from CD Light.

What’s Included

The Perfect Address SDK includes:

! One Windows DLL search engine, UNZDLL32.DLL
! One national address database for the entire USA on CD-ROM
! Programmer documentation in Adobe Acrobat format
! A header file for use with C/C++ compilers
! Sample programs written in Microsoft C, Visual Basic, and MS Access 97 (with source code)
! Perfect Address Interactive (single-user license, for development use only)

The Perfect Address SDK is updated monthly with the latest ZIP codes and address database information which we
obtain under license directly from the US Postal Service. When you order the product, you will always receive the
current month’s address database.

How Does Address Matching Work?

Address verification and correction using the Perfect Address SDK is a two-step process. First, the address must be
found in the 650 MB national address database. This is a complex process called “address matching”, using rules
defined by the US Postal Service. If the address can be “matched” to a single entry in the address database then it is
possible to continue with the address correction and information retrieval steps. If an address cannot be “matched” to
a single entry in the address database then address correction and information retrieval are not possible for that
particular address. In the latter case there are some alternate manual steps which can be undertaken to correct the
address.

Step 1: The Address Search

Your program must first gather the components of an address (street address, city and state or ZIP code) and pass the
address to the Perfect Address SDK address matching search engine (unzdll32.dll) using the
UNZ_CHECKADDRESS function call. The search engine parses the address into its components and then searches
the 650 MB address database for the best match it can find, using address matching rules defined by the US Postal
Service. The DLL then reports the result of this search back to your program as a result code.

The result of an address check can be any one of these four possibilities:

a. The address was found with an exact match. No spelling or format changes are needed.

1 - 3Introduction

b. The address was found, but spelling and/or format changes were necessary to achieve a match.
c. The address was not found. No match was possible using USPS address matching rules.
d. More than one matching address was found. The SDK cannot decide which one is correct.

Step 2: Standardized Address Retrieval

Your program must examine the result code returned by function UNZ_CHECKADDRESS to decide what to do
next. Here are some suggestions:

a. An exact address match requires no further action. For this to occur, the input address must already have been
standardized (by some previous address correction step, perhaps) and already have the correct ZIP+4. Nothing
further can be gained by retrieving the standardized address from the SDK in this case. However, you MAY wish
to retrieve additional information about the address, such as its county, area code, congressional district, and so
on. These steps are described below.

b. If the result code indicates that the address was corrected to achieve a match or was reformatted to USPS
standardized address format, you probably will want to retrieve the corrected, standardized address from the
SDK to update your database or display to an operator. To retrieve the corrected address your program must call
the SDK again using one or more of the SDK’s address retrieval functions, such as UNZ_GETSTDADDRESS,
listed below. It is not necessary to pass the address to the SDK again; the SDK remembers the last address which
you verified (on a per client basis), and returns the corrected, standardized form of that address. You can use the
address information retrieved by these functions to update your database record or display the corrected address
to an operator. If your program does not perform this update step, your database will remain unchanged.
PLEASE NOTE: THE SDK ITSELF NEVER DIRECTLY UPDATES YOUR DATABASE FILES. Only your
program can do that.

Your program can retrieve corrected and standardized address information as full standardized address lines or
as individual address components, depending upon which functions your program calls:

UNZ_GETSTDADDRESS - Returns the standardized address as full address lines.
UNZ_GETSTREETPARTS - Returns the standardized address as address components
UNZ_GETSTREETNUMBER - Returns the numeric address and predirection
UNZ_GETSTREETNAME - Returns the street name, suffix, and postdirection
UNZ_GETCITYSTZIP - Returns the city-state-ZIP+4

The SDK also provides other functions which return the standardized address components in various useful
combinations, as described elsewhere in this manual.

A reminder: your program should ONLY call these functions to retrieve a standardized address AFTER calling
UNZ_CHECKADDRESS and receiving a result indicating an exact match or corrected address match. If no
matching address was found then these functions return ambiguous results.

c. If no matching address was found, even after applying all logical naming and spelling corrections according to
USPS address matching rules, then there is nothing your program can retrieve from the SDK about this particular
address. The SDK cannot correctly “standardize” an address if no match was found, because it cannot “guess”
(according to USPS address matching rules) the components of the address.

What can you do in this latter case? Perhaps the street name or the city name is severely misspelled. Or some
critical address information has been omitted. It is also possible that the street or address simply has not yet been
added to the USPS’s national address database. It often takes months for new subdivisions to be added to the
national database.

1 - 4 Introduction

The result code returned by UNZ_CHECKADDRESS can give your program important clues about why address
matching failed for an address. Addresses which cannot be resolved by the SDK require human intervention to
determine the exact cause of the problem. In a database, you might mark the record with a special code or place
the record into a special file for further examination by an operator at a later time. For an interactive application,
you might wish to display a list of possible streets in that city to the operator.

For example, the SDK includes functions which allow your program to retrieve all valid street names for the
target city. Using street name data returned by functions UNZ_GETSTREETCOUNT and
UNZ_GETSTREETITEM your program might build an interactive display for your operators to assist them to
manually resolve a troublesome address. Your program can retrieve street information from the SDK to
incorporate into such displays, but your program must build the displays itself. The SDK itself contains no
display functions for building such interactive displays.

Another approach to resolving address matching problems is to use the interactive Windows program Perfect
Address (a separate product). This program allows an operator to “see” into the national address database in an
interactive way, possibly resolving the address while discussing the problem with the customer on the telephone.
Note: the Perfect Address SDK includes a single-user version of Perfect Address which you can use to evaluate
this approach. However, for network use on a company-wide basis, you’ll need an Enterprise License for Perfect
Address. Contact CD Light for more details. Both products use the exact same 650 MB national address
database.

d. If the SDK finds multiple addresses which match the input address, there is nothing useful your program can
retrieve from the SDK about the input address itself. However, your program can retrieve the list of matching
standardized addresses using functions UNZ_GETMATCHCOUNT and UNZ_GETMATCHADDR. This makes
it possible for your program to build a list of matching addresses to display to the operator, who may then be able
to resolve the ambiguity. However, the SDK itself contains no display functions for building such an interactive
display.

Retrieving Additional Address Information

If the results of the address check indicate that an exact match or corrected match was found, then, in addition to the
standardized address, your program MAY retrieve additional information about that address using functions such as
these:

UNZ_GETAREACODE - the area code (most prevalent area code for the 5-digit ZIP code)
UNZ_GETCOUNTY - the county name (address specific)
UNZ_GETCNTYFIPS - the county FIPS code (address specific)
UNZ_GETDPBC - delivery point bar code digits (address specific)
UNZ_GETCONGDIST - congressional district (address specific)
UNZ_GETTIMEZONE - time zone and daylight savings flag (for the 5-digit ZIP code)
UNZ_GETADDRESSTYPE - a single character code indicating the type of address
UNZ_GETZIPTYPE - a single character code indicating the type of ZIP code

Note that if no matching address was found then these functions return ambiguous results.

Summary

The Perfect Address SDK provides tools which your custom or commercial program can use to verify and correct an
address and find additional information about an address. Your program must pass the address to be verified to the

1 - 5Introduction

SDK and then retrieve the corrected address from the SDK. All database scanning and update functions and user
interface functions must reside in your program.

Royalties

You may incorporate the Perfect Address Windows DLLs into your application and distribute it as part of your
product royalty-free. However, the Perfect Address SDK Windows DLL works only with address database CD-
ROMs from CD Light. You are prohibited from reproducing these CD-ROMs. You can purchase the CD-ROMs
from CD Light. We offer substantial discounts, based on quantity, and encourage you to resell the CD-ROMs at an
appropriate price to your customers. Private labeling is available.

1 - 6 Introduction

2 - 1License Agreement

Copyright, Limited Warranty, and License Agreement

COPYRIGHT © 1996-2010 CD LIGHT, LLC
ALL RIGHTS RESERVED.

Perfect Address SDK is protected by Canadian and United States copyright laws, international copyright treaties, and
all other applicable national and international laws. This product, including all program and data files, may not, in
whole or in part, be copied or reproduced in any form, except as provided herein, without prior consent, in writing,
from CD Light. Except as provided in this statement, you may not transfer, rent, lease, lend, copy, modify, translate,
sublicense, time-share, or electronically transmit or receive this software, media, or documentation. You may not
attempt to unlock or bypass any data encryption or compression algorithm utilized by this program and its data.

LIMITED WARRANTY

CD Light warrants the physical media and physical documentation provided by CD Light to be free of defects in
materials and workmanship for a period of thirty (30) days from the original purchase date. If CD Light receives
notification within the warranty period of defects in materials or workmanship, and determines that such notification
is correct, CD Light will replace the defective media or documentation.

The entire and exclusive liability and remedy for breach of this limited warranty shall be limited to replacement of
defective media or documentation and shall not include or extend to any claim for or right to recover any other
damages, including but not limited to, loss of profit, data, or use of the software or special, incidental or
consequential damages, or other similar claims, even if CD Light has been specifically advised of the possibility of
such damages. In no event will CD Light’s liability for any damages to you or any other person ever exceed the
original purchase price paid for the package or the license to use the software, regardless of the form of the claim.

CD LIGHT SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, REPRESENTATIONS, OR
CONDITIONS, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY
OR CONDITION OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER
IMPLIED TERMS ARE EXCLUDED.

Specifically, CD Light makes no representation or warranty that the software, documentation, or data are "error-
free", or meet any user’s particular standards, requirements, or needs. In all events, any implied warranty,
representation, condition, or other term is limited to the physical media and documentation and is limited to the 30-
day duration of the limited warranty.

General Provisions

This statement may be modified only in writing signed by you and an authorized officer of CD Light. If any
provision of this statement is found void or unenforceable, the remainder will remain valid and enforceable
according to its terms. If any remedy provided is determined to have failed of its essential purpose, all limitations of
liability and exclusions of damages set forth in the limited warranty shall remain in effect.

This statement shall be construed, interpreted, and governed by the laws of the State of Texas, USA. This statement
gives you specific legal rights; you may have others which vary from state to state and from country to country. CD
Light reserves all rights not specifically granted in this statement.

2 - 2 License Agreement

LICENSE AGREEMENT

You have the non-exclusive right to use Perfect Address SDK, including the DLL search engine module and the
address database files, on a single computer or single network of directly connected computers (client-server or
Internet server) at any one time. You may copy the address database files from the distribution CD-ROM to the hard
disk drive on one (1) server. You are not permitted to otherwise reproduce the address database in whole or in part.

Perfect Address SDK includes the search engine module, UNZDLL32.DLL, intended for your use in adding address
matching functions to your application programs. Perfect Address SDK also includes source code in the form of
sample programs. In addition to the rights you have under the copyright law and the limited warranty, CD Light,
under its copyright, grants you the license to use UNZDLL32.DLL, and the source code included in this package in
the manner described below, so long as you comply with all of the conditions in this statement.

Compiled Programs

You may write and compile your own application programs incorporating UNZDLL32.DLL, and the source code
contained in Perfect Address SDK. If you are the licensed, registered user of Perfect Address SDK, you may use,
reproduce, give away, or sell any program incorporating UNZDLL32.DLL, and the source code, in executable form
only, without additional license or fees, subject to all of the conditions of this statement.

Distribution of Perfect Address SDK Components

Under CD Light’s copyright, and subject to all of the conditions in this statement, CD Light authorizes the licensed,
registered user of this product to reproduce and distribute exact copies of UNZDLL32.DLL and the SETUP.EXE
program, provided that such copies are made from the original media of the Perfect Address SDK (or a backup copy
made directly from the original media).

You may not reproduce and distribute any other file or component of the Perfect Address SDK. Specifically, you
may not reproduce and distribute the address database CD-ROM or any of the eight data files, Z1.DAT through
Z8.DAT, found on that CD-ROM. You may not distribute a version of UNZDLL32.DLL which has been modified in
any way.

Copies of UNZDLL32.DLL, and SETUP.EXE may only be distributed with and for the sole purpose of executing
programs permitted under this statement. Under no circumstances may any copies of UNZDLL32.DLL or SET-
UP.EXE be distributed separately. You may not reproduce or distribute any of CD Light’s documentation without
CD Light’s permission.

General Terms that Apply to Distributed Components

All copies of the programs you create must bear a valid copyright notice, either your own or the CD Light copyright
notice that appears on the original diskette label of Perfect Address SDK.

You may not remove or alter any CD Light copyright notice contained in any portion UNZDLL32.DLL, the source
code, or data files.

You will remain solely responsible to anyone receiving your programs for support, service, upgrades, or technical or
other assistance, and such recipients will have no right to contact CD Light for such services or assistance.

You will indemnify and hold CD Light and its suppliers harmless from and against any claims or liabilities arising
out of the use, reproduction, or distribution of your programs.

2 - 3License Agreement, Revision of Perfect Address SDK

CD Light provides no warranty at all to any person, other then the Limited Warranty provided to the original
purchaser of Perfect Address SDK.

All CD Light libraries, source code, and other files, whether distributable or not, remain the exclusive property of
CD Light.

Nothing in this license statement permits you to derive the source code of files that CD Light has provided to you in
executable form only, or to reproduce, modify, use, or distribute the source code of such files.

REVISION of Perfect Address SDK

CD Light reserves the right to revise this program and its data files and to make changes from time to time in the
content hereof without obligation of CD Light to notify you of such revisions or changes.

2 - 4 License Agreement, Revision of Perfect Address SDK

3 - 1Installation

Installation

Initial Installation

The initial Perfect Address SDK installation consists of two steps:

1. Run the Perfect Address SDK setup program, SETUP.EXE.

This Windows program, found on the distribution CD-ROM, installs the Perfect Address SDK on your hard drive,
and creates the file UNZDLL.INI in your Windows directory. This file directs the Perfect Address DLL search
engine to the eight data files (Z1.DAT through Z8.DAT) it needs to verify addresses.

The eight data files can be left on the CD-ROM, or they can be copied to your hard disk, provided the hard disk has
sufficient capacity (about 650 MB) to hold all eight files. Best performance can be obtained by copying all eight files
to the hard disk. You can also "split" the files, installing the small files Z1.DAT through Z7.DAT on hard disk, while
leaving the large file, Z8.DAT, on the CD-ROM. This approach, which requires only about 1 MB of hard disk space,
provides improved performance at the cost of very little hard disk space.

In the SDK directory you should find a samples directory containing sample programs in both source and executable
form. We suggest that you try the sample programs and study the sample program source code to better understand
the various ways you can use the DLL.

And be sure to check the readme file for the latest information about the DLLs.

2. C/C++ Developers should copy these files:

UNZAPI.H Include file for C/C++ developers
UNZDLL32.DLL 32-bit DLL
UNZDLL32.LIB 32-bit library module for C/C++

from the SDK directory to your development directory where you wish to perform your program compiles, links,
and testing. In general, the DLL itself should reside in the directory with the calling program. Alternatively, you
can store the DLL in the Windows directory. If you do not wish to store the DLL in one of these two places, you
will need to provide an explicit load statement in your program and provide the complete path to the DLL.

Installing "split" data files

The address database CD-ROM holds eight data files, Z1.DAT through Z8.DAT. The easiest installation (and the
method which requires the least space on your hard disk) is to leave all eight files on the CD-ROM. The setup
program creates file UNZDLL.INI in your Windows directory, which directs the DLL to the files on the CD-ROM.
You can, however, install some or all of these eight files on your hard disk to improve performance.

If you wish to move all eight files to your hard disk you will need more than 600 MB of free space to hold all of the
files. First create a directory to hold the files, and then simply copy them to the desired directory. (Note: this copy
step may take a half hour or longer, depending upon the speed of the drives). Then run setup and, when asked, enter
the path to the data files.

As a compromise between hard disk space and speed, you might consider a "split" configuration with the seven
smallest files, Z1.DAT through Z7.DAT, on your hard disk and the largest file, Z8.DAT, remaining on the

3 - 2 Installation

CD-ROM. This configuration requires only about 1MB of space on your hard disk, but offers improved
performance. Simply copy Z1.DAT through Z7.DAT to the directory of your choice. Then you must manually
modify UNZDLL.INI to direct the DLL to the proper directory.

When you edit UNZDLL.INI you should find these two entries:

 DataPath=
 CDROMPath=

The DataPath entry controls access to Z1.DAT through Z7.DAT. The CDROMPath entry controls access to
Z8.DAT. You should edit these paths appropriately to match your final configuration. Note that the CDROMPath
can point to any legitimate path, despite its name.

Using UNC Path Names

Paths to the data files in a network environment follow Universal Naming Convention (UNC) rules. This means that
you can specify a remote computer using its network name instead of mapping the remote computer to a local drive,
as in:

\\Server\sdk\files

Using the Windows Registry

In some server applications under Windows 2000 or Windows NT you may find that security rules prevent the SDK
from accessing its initialization file, UNZDLL.INI, in the Windows (or WinNT) folder. This can cause the SDK to
fail to initialize properly with errors FE02 or FE16.

To solve this problem we added Windows registry support to the SDK. The SDK examines the Windows registry for
the initialization parameters it requires. If the SDK does not find the required entries in the registry it defaults to
values found in UNZDLL.INI in the Windows folder. Note: the SDK setup program DOES NOT automatically
create these registry entries.

If you wish to take advantage of this feature, you must manually create the following registry entries. If you do not
know how to make registry entries, please do not attempt this; accidental changes to the registry can render your
computer system inoperable.

The registry entries required are as follows:

1. Add a new key:

HKEY_LOCAL_MACHINE\software\CD Light, LLC\PASDK

3 - 3Installation

2. Under the new key, add two string values:

CDROMPath
and
DataPath

3. For these values enter the appropriate UNC or direct paths, just as you would in the UNZDLL.INI file.

For example:

\\data\e\zipdata\

4. Add a binary value:

MixedCase

Enter a binary value of 00 or 01, depending upon your mixed case preference. (1 == mixed case, 0 == all caps).

Caution - if you don't understand what the previous instructions mean, or if you have no experience in making
changes to the Windows registry, please do not attempt this change. And please do not contact us for help in making
these registry entries. We will NOT take responsibility for the problems you can create by making errors
in the registry.

Update Installation

When you receive a new release of the Perfect Address SDK, you must install the new version prior to using it. It is
not sufficient just to place the CD-ROM in a CD-ROM drive and expect everything to work. The reason is that each
version of the address database must match the DLL which is used to access it. This means that, as a minimum, you
MUST install the proper DLL from the new CD-ROM into the proper place (usually the Windows directory) on each
client machine which must access the new address database. Failure to install the new DLL will cause the DLL
initialization function to fail with error code 117. Error code 117 indicates a version mismatch between the active
DLL and the active address database.

There are several reasons for this: we add new features to the SDK from time to time and we often change the format
of the address database files. This means that you (and, potentially, your customers) must install a new DLL with
each new address database update. An older DLL will not work with the new database files, and vice versa.
However, we do retain the old function names and calling parameters, such that no programming changes are
normally required to maintain compatibility. However, CD Light does reserve the right to change the function names
and their parameters at any time.

For your convenience in performing updates, the new UNZDLL32.DLL file is stored in a folder named DLLS on the
SDK CDROM. You can simply copy the DLL file and the eight data files (Z1.DAT - Z8.DAT) from the CDROM to
their proper places on your computer(s). This can be accomplished using a simple script file. It is not necessary to
run the setup program in this case, and no changes are required to the initialization file or the registry.

4 - 1Passing DLL Parameters

Passing DLL Parameters

Passing String Parameters to the Search Engine

The functions of the DLL search engine expect all address strings to be standard "C" strings (sometimes called
ASCIIZ strings), which end in a "null character" (binary zero). Please note that the character used MUST be a
BINARY ZERO (NOT an ASCII numeric "0" character), which is the standard method of terminating strings in a
Windows environment. The NULL character should immediately follow the last text character of the string.
However, you may optionally place the NULL in the last defined position of the string buffer and fill with blanks, if
you wish. The DLL ignores all trailing blanks. The NULL character does take up a buffer position, and must be
taken into account when allocating a buffer to hold a string parameter.

All address strings passed as parameters to the DLL are passed "by reference". In standard Windows terminology, a
string parameter is passed as an LPSTR (a Long Pointer to a character STRing). This means that the calling program
must pass to the DLL a "pointer" to the buffer containing the string characters. A "pointer" is actually a 32-bit
memory address where the first byte of the string has been stored by the calling program for functions such as
UNZ_CHECKADDRESS(), or where the answer string will be stored by the DLL, for functions such as
UNZ_GETSTDADDRESS(). The actual string characters are NOT passed directly to the DLL. Instead, the DLL
uses the address passed to it to find and process the input string characters or store a result string.

For DLL functions which "return a string", such as UNZ_GETSTDADDRESS(), the DLL DOES NOT allocate
buffers for the answer strings. Instead, it expects your program to allocate the buffers into which the DLL will place
the answer strings. The addresses of these buffer are passed to the DLL, which then copies the answer strings into the
buffers allocated by your program. The DLL DOES NOT allocate additional space for a buffer, but assumes that a
buffer of sufficient length (at least 51 bytes) has been allocated by your program. A buffer of 51 bytes is sufficient to
hold the largest answer string plus the terminating NULL byte.

A buffer passed to the DLL for an answer string need not be initialized in any way other than being fully allocated by
your program. The DLL assumes that the string buffer allocated by your program is immediately available for use,
and large enough (at least 51 bytes in length; more is okay, less is dangerous) to hold the answer string. You DO
NOT need to store a NULL byte in the first position of an answer string before calling the DLL.

WARNING - IF YOUR PROGRAM DOES NOT ALLOCATE SUFFICIENT SPACE FOR THE ANSWER
STRINGS YOU WILL CAUSE THE DLL AND YOUR PROGRAM TO CRASH WITH A GENERAL
PROTECTION FAULT!!!

If the DLL returns an empty answer string to your program, it places a NULL character (binary zero) in the first
position of the answer string buffer. The DLL does not free the buffer nor erase the entire prior contents of the
buffer. If you wish the contents to be erased, you must do this before calling the DLL.

Visual Basic and MS Access Pass Strings "ByVal"

Visual Basic and Microsoft Access strings cannot be passed directly to the DLL, because they are NOT terminated in
a NULL character. However, Visual Basic and MS Access provide the "ByVal" reserved word to define a string
argument which can be passed to the DLL. The ByVal reserved word tells these programs to pass the string to the
DLL as a NULL-terminated string. I know, very confusing, isn’t it! In addition, MS Access and Visual Basic
automatically handle any required Unicode conversions (the DLL deals only in 8-bit ASCII character strings).

4 - 2 Passing DLL Parameters

Use the following declarations to predefine strings which you can pass to the DLL:

Global szFirmName As String * 51
Global szPRUrb As String * 51
Global szDelLine As String * 51
Global szLastLine As String * 51

Then, declare the function in terms of these predefined strings:

Declare Function UNZ_GETSTDADDRESS Lib "UNZDLL.DLL" (byVal hUnz%, ByVal szFirmName As String,
ByVal szPRUrb As String, ByVal szDelLine As String, ByVal szLastLine As String) As Integer

The following are some examples of declarations used in the MS Access 97 sample code:

Private Declare Function UNZ_INIT_EX Lib "UNZDLL32.DLL" () As Long
Private Declare Function UNZ_TERM Lib "UNZDLL32.DLL" (ByVal hUnz As Long) As Long
Private Declare Function UNZ_CHECKADDRESS Lib "UNZDLL32.DLL" (ByVal hUnz As Long, ByVal Line1$,

ByVal line2$, ByVal line3$, ByVal Line4$) As Long
Private Declare Function UNZ_GETSTDADDRESS Lib "UNZDLL32.DLL" (ByVal hUnz As Long, ByVal

szFirmName As String, ByVal szPRUrb As String, ByVal szDelLine As String, ByVal szLastLine As String) As
Long

Private Declare Function UNZ_GETCITY Lib "UNZDLL32.DLL" (ByVal hUnz As Long, ByVal szCity As String)
As Long

Private Declare Function UNZ_GETSTATE Lib "UNZDLL32.DLL" (ByVal hUnz As Long, ByVal szState As
String) As Long

Private Declare Function UNZ_GETZIP Lib "UNZDLL32.DLL" (ByVal hUnz As Long, ByVal szZIP As String) As
Long

Using this approach, you should have no trouble passing strings to the DLL.

5 - 1Address Lookup Functions

SDK Functions

The functions provided by the Perfect Address SDK fall into two general types:

Search functions - attempt to match an address or ZIP code
Retrieval functions - retrieve additional info about an address or ZIP code

You can perform a simple address check by calling just these four functions:

UNZ_INIT_EX() - Prepare the DLL to process address checks
UNZ_CHECKADDRESS() - Check one address
UNZ_GETSTDADDRESS() - Retrieve the corrected, standardized address
UNZ_TERM() - Terminate use of the DLL

5 - 2 Address Lookup Functions

UNZ_INIT_EX()

hUNZ UNZ_INIT_EX();

This function replaces the obsolete function UNZ_INIT() and should be used for all new applications. The only
difference between the two initialization functions is the error code numbering scheme returned by
UNZ_CHECKADDRESS() and UNZ_CHECKZIP().

This function initializes the DLL for address and ZIP code verification requests. It returns a unique handle which
must be used by the calling task on subsequent function calls to identify itself to the DLL.

Parameters:

None.

Returns:

This function returns a handle of type HUNZ (a 16-bit or 32-bit integer value, depending upon which DLL you
are using) which must be passed with all other handle function calls. If the value of the handle returned by
UNZ_INIT_EX() is 0, the initialization function has detected a fatal error during the initialization process. In this
case you should call UNZ_ERROR() to learn the exact cause of the failure. Your program should NOT call any
other DLL functions after such an error. It is not necessary (in fact, not safe) to call UNZ_TERM() after an
initialization failure.

The most common cause of this problem is failure of the DLL to find the eight address database files it needs. The
paths to these files are stored in file UNZDLL.INI, which is normally found in the Windows directory of your
system. See the Installation chapter for a discussion of database file placement and editing of UNZDLL.INI to
match your environment.

Example:

#include "unzapi.h"

HUNZ hUNZ;

hUNZ = UNZ_INIT_EX();

5 - 3Address Lookup Functions

UNZ_INIT()

hUNZ UNZ_INIT();

This function is obsolete; it has been replaced by UNZ_INIT_EX(). This initialization function is retained only for
backwards compatibility with existing applications. All new applications should use UNZ_INIT_EX(). The only
difference between the two initialization functions is the error code numbering scheme returned by
UNZ_CHECKADDRESS() and UNZ_CHECKZIP().

This function initializes the DLL for address and ZIP code verification requests. It returns a unique handle which
must be used by the calling task on subsequent function calls to identify itself to the DLL.

Parameters:

None.

Returns:

This function returns a handle of type HUNZ (a 16-bit or 32-bit integer value, depending upon which DLL you
are using) which must be passed with all other handle function calls. If the value of the handle returned by
UNZ_INIT() is 0, the initialization function has detected a fatal error during the initialization process. In this case
you should call UNZ_ERROR() to learn the exact cause of the failure. Your program should NOT call any other
DLL functions after such an error. It is not necessary (in fact, not safe) to call UNZ_TERM() after an initialization
failure.

The most common cause of this problem is failure of the DLL to find the eight address database files it needs. The
paths to these files are stored in file UNZDLL.INI, which is normally found in the Windows directory of your
system. See the Installation chapter for a discussion of database file placement and editing of UNZDLL.INI to
match your environment.

Example:

#include "unzapi.h"

HUNZ hUNZ;

hUNZ = UNZ_INIT();

5 - 4 Address Lookup Functions

UNZ_TERM()

int UNZ_TERM (hUNZ);

This function terminates address verification requests for the calling task, and frees resources allocated by the DLL.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX().

Returns:

This function returns TRUE (1) for success or FALSE (0) on any error.

Example:

#include "unzapi.h"

HUNZ hUNZ;
int result;

result = UNZ_TERM(hUNZ);

5 - 5Address Lookup Functions

UNZ_CHECKADDRESS()

int UNZ_CHECKADDRESS (hUNZ, (LPSTR)szLine1, (LPSTR)szLine2, (LPSTR)szLine3, (LPSTR)szLine4);

This function performs verification and standardization of the address whose components are passed as parameters.
The address strings passed to this function are not modified by this function; the resulting standardized address must
be obtained by calling other functions, as defined below.

Address matching first attempts to identify the city and state, then the street from the list of valid streets for that city,
and finally the street number from the range of valid addresses for that street.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szLine1 - Firm or high-rise name (optional)
szLine2 - Puerto Rican urbanization name (optional)
szLine3 - Street address (e.g. 100 N MAIN ST APT 6)
szLine4 - City-state-ZIP code

Optional parameters must be included in the function call, but can be empty (containing a single NULL character
or nothing but spaces). All address strings must also be NULL-terminated. This is accomplished by storing a
binary zero character (NULL character) after the last text character in the string buffer. Note: this is performed
automatically by Visual Basic or VBA when used with MS Access.

Returns:

This function returns an integer value indicating the result of the verification effort. The original input address
strings are not modified by this function.

The result of an address check can be any one of these four possibilities:

a. The address was found with an exact match. No spelling or format changes are needed.
b. The address was found, but spelling and/or format changes were necessary to achieve a match.
c. The address was not found. No match was possible using USPS address matching rules.
d. More than one matching address was found. The SDK cannot decide which one is correct.

A result of 0 indicates that the address was fully validated with no changes. A non-zero result indicates that the
address was corrected, that the address was uncorrectable, or that an error occurred during the verification
process. See Chapter 6 for a full list of possible return codes. Function UNZ_GETADDRESSFLAGS() provides a
detailed breakdown of changes applied to a corrected address.

If the result indicates that the original address was corrected to achieve a match, you must use other functions to
retrieve the corrected address components from the DLL. A reminder: the original input address strings are not
modified by this function.

To obtain the entire corrected address in a single call, use function UNZ_GETSTDADDRESS(). You can retrieve
corrected address components by calling functions UNZ_GETSTREETPARTS(), UNZ_GETCITYSTZIP(),
UNZ_GETSTREETNUMBER(), UNZ_GETSTREETNAME, or UNZ_GETSECONDARY(). To retrieve the
delivery point barcode digits call function UNZ_GETDPBC(). Call function UNZ_GETCONGDIST() to retrieve
the congressional district for the address. If an address verification error occurred, the exact error text can be
retrieved by calling function UNZ_GETERRORTEXT().

Example:

5 - 6 Address Lookup Functions

#include "unzapi.h"

HUNZ hUNZ;
char *szLine1;
char *szLine2;
char *szLine3;
char *szLine4;
int result;

result = UNZ_CHECKADDRESS (hUNZ, (LPSTR)szLine1, (LPSTR)szLine2, (LPSTR)szLine3,
(LPSTR)szLine4);

For a simple address check, set szLine1 and szLine2 to NULL. Copy the street address line to szLine3, and the
city-state-zip line to szLine4. Then call function UNZ_CHECKADDRESS().

Note that if you provide the city and state, the ZIP code is optional. If you provide the 5-digit ZIP code, the city
and state are optional. Extraneous blanks and embedded commas are ignored by the function. If you provide a
ZIP+4, the function ignores the "+4", returning the correct ZIP+4 for the address.

Passing an Address to UNZ_CHECKADDRESS()

There are four address string parameters defined for the UNZ_CHECKADDRESS() function:

Firm Name (can be empty)
PR Urbanization Name (can be empty)
Street Address (required)
City-State-ZIP (required)

Each of these parameters should be stored as a NULL-terminated string in its own buffer. Leading and trailing
spaces, if present, are ignored by the function. Multiple embedded spaces are also ignored by the function. However,
individual data elements of the address and city-state-ZIP parameters should be separated by one space. Strings can
be passed in upper, lower, or mixed case. Note: the DLL returns the standardized address as upper case or mixed
case, depending upon the MixedCase flag in UNZDLL.INI. See Chapter 6 for more details.

The firm name parameter is optional. If present, it helps the function match the address, and can make a difference in
the returned ZIP+4 and Delivery Point Bar Code. However, you should NOT place extraneous data in this
parameter. If this parameter is unused, you should place a NULL character in the first position of the string buffer.
Note: you MUST pass this string parameter to the function, even if the content is null.

The Puerto Rican urbanization parameter is also optional. This parameter is normally used for Puerto Rican
addresses. If the address is in a state other than Puerto Rico, it is permissible to place additional data, such as mail
stop or private mailbox number, in this field. This address data will be returned intact after a successful address
verification. If this parameter is unused, you should place a NULL character in the first position of the string buffer.
Note: you MUST pass this string parameter to the function, even if the content is null.

5 - 7Address Lookup Functions

The street address parameter is required. Here you should place the data elements of the street address in this order,
separated by spaces:

number pre-direction street suffix post-direction secondary number

Example:

425 S MEDICAL DR E STE 18

Multiple embedded spaces are ignored by the function. If these data elements are stored as separate data elements in
your database, you must combine them as shown before passing them to the function.

The city-state-ZIP parameter is required. Here you should place the data elements of the "last line" of the address in
this order, separated by spaces:

city state zipcode

Example:

BOUNTIFUL UT 84010

If your program maintains these data elements as separate data fields in your database, you must combine them as
shown above before passing them to the function. The function ignores multiple embedded spaces and superfluous
punctuation characters.

The function attempts to identify the correct city based on city and state, or ZIP code, or all three. If the city and state
are present, the ZIP code can be omitted. The ZIP code can be either 5-digit, 9-digit (ZIP+4) or missing. If the ZIP
code is present, the city and state can be omitted. The matching algorithm attempts to establish agreement between
any two of the three possible data elements of the city-state-ZIP parameter. As long as two of the three elements
match, the function will proceed with address matching. If the function can find no match between city, state and ZIP
code, address matching fails. The function returns error code 50 (total city-state-zip mismatch) in this case.

You MUST pass all four address strings to the function in the order shown. The optional parameters must be passed,
even if the parameter string is empty. The function does NOT currently scan the parameters "from the bottom",
although that is a possible future enhancement.

5 - 8 Address Lookup Functions

UNZ_CHECKLASTLINE()

int UNZ_CHECKLASTLINE (hUNZ, (LPSTR)szLine1);

This function requests verification and standardization of only the last line (city-state-ZIP) of an address. The
primary purpose of this function is to determine the 5-digit ZIP code for a particular city-state when a full address
check fails.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szLine1 - City-state-ZIP code string

szLine1 must be NULL-terminated (initialized to a binary zero character).

Returns:

This function returns an integer value indicating the result of the verification effort. A result of 0 indicates that the
city-state-ZIP was fully validated with no changes. A non-zero result indicates that the city-state-ZIP was
corrected, that the city-state-ZIP was uncorrectable, or that an error occurred during the verification process. See
Chapter 6 for a full list of possible return codes. Function UNZ_GETADDRESSFLAGS() provides a detailed
breakdown of changes applied to the corrected city-state-ZIP.

If the result indicates successful verification or correction, you must use other functions, such as
UNZ_GETCITYSTZIP(), to retrieve the standardized city-state-ZIP components from the DLL. The original
input address strings are not modified by this function.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szLine1;
int result;

result = UNZ_CHECKLASTLINE(hUNZ, (LPSTR)szLine1);

Note that if you provide the city and state, the ZIP code is optional. If you provide the 5-digit ZIP code, the city
and state are optional. Extraneous blanks and embedded commas are ignored by the function. If you provide a
ZIP+4, the function ignores the "+4".

5 - 9Address Lookup Functions

UNZ_CHECKZIP()

int UNZ_CHECKZIP (hUNZ, (LPSTR)szZIP, (LPSTR)szZIP4);

This function requests a search of the database based on ZIP code. If the provided ZIP code is a valid 5-digit ZIP
code, this request finds the proper state and the city name preferred by the US Postal Service for use on mail
associated with that ZIP code. If the provided ZIP code is a valid 9-digit ZIP code, this request finds the proper street
address or address range associated with that ZIP code.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szZIP - A 5-digit or 9-digit ZIP code (xxxxx or xxxxx-xxxx) (string)
szZIP4 - The 4-digit add-on value of a 9-digit ZIP code (optional, string)

A 9-digit ZIP code can be passed as one string in the form 84093-1679, or can be provided as separate strings,
84093 in szZIP and 1679 in szZIP4. If the string passed in szZIP is a valid 9-digit ZIP code, the parameter szZIP4
is ignored. However, if szZIP is a 5-digit ZIP code and szZIP4 is not used, it must be initialized to 0 (NULL).

Returns:

This function returns an integer value indicating the result of the ZIP code search. A result of 0 indicates that the
ZIP code and a matching address were found in the database. A non-zero result indicates that the ZIP code was
not found, that the ZIP code applies to an address range, or that an error occurred during the verification process.
See Chapter 6 for a full list of possible return codes.

If the result indicates successful search for the ZIP code, the city and state and (optionally) the matching address
components can be returned to the calling task by calling functions UNZ_GETCITYSTZIP() or
UNZ_GETSTDADDRESS(), as defined below. If a ZIP code lookup error occurred, the exact error text can be
obtained by calling function UNZ_GETERRORTEXT().

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szZIP;
char *szZIP4;
int result;

result = UNZ_CHECKZIP (hUNZ, (LPSTR)szZIP, (LPSTR)szZIP4);

ZIP code Searches of Address Ranges

ZIP+4 ZIP codes are often assigned by the USPS to a range of addresses which belong to the same block of a street
or to a range of apartments or suites in a high-rise apartment or office building. In this case, the DLL cannot identify
a particular "correct" address for that ZIP code. Instead, the DLL returns the lowest address of the range as the
"correct" address, and copies the address range to the AddrRange field of the parameter block. It also sets a return
code to indicate the address range condition.

Sometimes the same ZIP+4 code is assigned by the USPS to more than one specific mail delivery point. The DLL
always returns the first matching address it finds, ignoring the remaining matching addresses, if any.

5 - 10 Address Lookup Functions

5 - 11Address Lookup Functions

UNZ_GETSTDADDRESS()

void UNZ_GETSTDADDRESS (hUNZ, (LPSTR)szFirmHigh, (LPSTR)szPRUrb, (LPSTR)szDelLine,
(LPSTR)szLastLine);

This function returns the four lines of a standardized address. This function should be called only after successfully
calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested information from the
appropriate fields of a parameter block reserved by the DLL for the calling task into the empty strings pointed to by
the parameters.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szFirmHigh - Pointer to empty string for the firm or high-rise building name
szPRUrb - Pointer to empty string for the Puerto Rican urbanization name
szDelLine - Pointer to empty string for the delivery line (street address)
szLastLine - Pointer to empty string for the last line (city-state-ZIP)

The existing contents of these strings are overwritten with the results of the most recent address search. Each
string buffer should ALWAYS have a minimum allocated size of 51 bytes. If the standard address contains no
data for a particular field (such as a street address with no firm name) the corresponding string is returned as 0
(NULL).

Returns:

No direct result; standard address lines copied into string buffers.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szFirmHigh;
char *szPRUrb;
char *szDelLine;
char *szLastLine;

UNZ_GETSTDADDRESS (hUNZ, (LPSTR)szFirmHigh, (LPSTR)szPRUrb, (LPSTR)szDelLine,
(LPSTR)szLastLine);

5 - 12 Address Lookup Functions

UNZ_GETSTREETPARTS()

void UNZ_GETSTREETPARTS (hUNZ, (LPSTR)szNumber, (LPSTR)szStreet, (LPSTR)szUnit);

This function returns the individual components of the delivery line (street address line) of the standardized address.
This function should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP().
This function copies the requested information from the appropriate fields of a parameter block reserved by the DLL
for the calling task into the empty strings pointed to by the parameters.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szNumber - Pointer to empty string into which street number is copied, including predirection, if any
szStreet - Pointer to empty string into which street name, street suffix, and postdirection, if any, are

copied
szUnit - Pointer to empty string into which secondary address type and number are copied

The existing contents of these strings are overwritten with the results of the most recent address search. The string
buffers should have a minimum allocated size of 51 bytes. If the standard address contains no data for a particular
field (such as a street address with no apartment number) the corresponding string is returned as 0 (NULL).

Returns:

No direct result; delivery line address components copied into string buffers.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szNumber;
char *szStreet;
char *szUnit;

UNZ_GETSTREETPARTS (hUNZ, (LPSTR)szNumber, (LPSTR)szStreet, (LPSTR)szUnit);

For the street address:

8861 E Silverstone Way Apt 6A

the returned parameters are:

szNumber: 8861 E
szStreet: SILVERSTONE WAY
szUnit: APT 6A

5 - 13Address Lookup Functions

UNZ_GETSTREETNUMBER()

void UNZ_GETSTREETNUMBER (hUNZ, (LPSTR)szNumber);

This function returns the street number and predirection code, if any, of the standardized address. This function
should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function
copies the requested information from the appropriate field of a parameter block reserved by the DLL for the calling
task into the empty string pointed to by the szNumber parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szNumber - Pointer to empty string into which street number is copied, including predirection, if any

The existing contents of this string are overwritten with the street number components of the most recent address
search. The string buffer should have a minimum allocated size of 25 bytes.

Returns:

No direct result; the street number components copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szNumber;

UNZ_GETSTREETNUMBER (hUNZ, (LPSTR)szNumber);

For the street address:

8861 E Silverstone Way Apt 6A

the returned parameter is:

8861 E

5 - 14 Address Lookup Functions

UNZ_GETSTREETNAME()

void UNZ_GETSTREETNAME (hUNZ, (LPSTR)szName);

This function returns the street name, suffix (DR, ST, AVE) and postdirection code, if any, of the standardized
address. This function should be called only after successfully calling UNZ_CHECKADDRESS() or
UNZ_CHECKZIP(). This function copies the requested information from the appropriate field of a parameter block
reserved by the DLL for the calling task into the empty string pointed to by the szName parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szName - Pointer to empty string into which street name is copied, including predirection, if any

The existing contents of this string are overwritten with the street name components of the most recent address
search. The string buffer should have a minimum allocated size of 35 bytes.

Returns:

No direct result; the street name components copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szName;

UNZ_GETSTREETNAME (hUNZ, (LPSTR)szName);

For the street address:

8861 E Silverstone Way Apt 6A

the returned parameter is:

Silverstone Way

5 - 15Address Lookup Functions

UNZ_GETSECONDARY()

void UNZ_GETSECONDARY (hUNZ, (LPSTR)szUnit);

This function returns the secondary (apartment/suite) address components of the standardized address. This function
should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function
copies the requested information from the appropriate field of a parameter block reserved by the DLL for the calling
task into the empty string pointed to by the szUnit parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szUnit - Pointer to empty string into which the secondary address is copied

The existing contents of this string are overwritten with the secondary address components of the most recent
address search. The string buffer should have a minimum allocated size of 25 bytes. If the standard address
contains no secondary address data, the szUnit string is returned as 0 (NULL).

Returns:

No direct result; secondary address components copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szUnit;

UNZ_GETSECONDARY (hUNZ, (LPSTR)szUnit);

For the street address:

8861 E Silverstone Way Apt 6A

the returned parameter is:

Apt 6A

5 - 16 Address Lookup Functions

UNZ_GETCITYSTZIP()

void UNZ_GETCITYSTZIP (hUNZ, (LPSTR)szCity, (LPSTR)szState, (LPSTR)szZIP);

This function returns the individual components of the last line (city-state-ZIP line) of the standardized address. This
function should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This
function copies the requested information from the appropriate fields of a parameter block reserved by the DLL for
the calling task into the empty strings pointed to by the parameters.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCity - Pointer to empty string for the city name
szState - Pointer to empty string the 2-letter state abbreviation
szZIP - Pointer to empty string for the 9-digit ZIP code

The existing contents of these strings are overwritten with the results of the most recent address search. Each
string buffer should have a minimum allocated size of 51 bytes.

Returns:

No direct result; last line address components copied into string buffers.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szCity;
char *szState;
char *szZIP;

UNZ_GETCITYSTZIP (hUNZ, (LPSTR)szCity, (LPSTR)szState, (LPSTR)szZIP);

5 - 17Address Lookup Functions

UNZ_GETCITY()

void UNZ_GETCITY (hUNZ, (LPSTR)szCity);

This function returns the city name of the standardized address. This function should be called only after successfully
calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested information from the
appropriate field of a parameter block reserved by the DLL for the calling task into the empty string pointed to by the
szCity parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCity - Pointer to empty string into which the city name is copied

The existing contents of this string are overwritten with the city name of the most recent address search. The string
buffer should have a minimum allocated size of 29 bytes.

Returns:

No direct result; the city name copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szCity;

UNZ_GETCITY (hUNZ, (LPSTR)szCity);

For the street address:

8861 E Silverstone Way Apt 6A
Sandy, UT 84093

the returned parameter is:

SANDY

5 - 18 Address Lookup Functions

UNZ_GETSTATE()

void UNZ_GETSTATE (hUNZ, (LPSTR)szState);

This function returns the 2-character state code of the standardized address. This function should be called only after
successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested
information from the appropriate field of a parameter block reserved by the DLL for the calling task into the empty
string pointed to by the szState parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szState - Pointer to empty string into which the state code is copied

The existing contents of this string are overwritten with the state code of the most recent address search. The
string buffer should have a minimum allocated size of 3 bytes.

Returns:

No direct result; the state code copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szState;

UNZ_GETSTATE (hUNZ, (LPSTR)szState);

For the street address:

8861 E Silverstone Way Apt 6A
Sandy UT 84093

the returned parameter is:

UT

5 - 19Address Lookup Functions

UNZ_GETZIP()

void UNZ_GETZIP (hUNZ, (LPSTR)szZip);

This function returns the ZIP+4 code of the standardized address. This function should be called only after
successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested
information from the appropriate field of a parameter block reserved by the DLL for the calling task into the empty
string pointed to by the szZip parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szZip - Pointer to empty string into which the ZIP+4 code is copied

The existing contents of this string are overwritten with the ZIP+4 code of the most recent address search. The
string buffer should have a minimum allocated size of 11 bytes.

Returns:

No direct result; the ZIP+4 copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szZip;

UNZ_GETZIP (hUNZ, (LPSTR)szZip);

For the street address:

8861 E Silverstone Way Apt 6A
Sandy UT 84093

the returned parameter is:

84093-1679

5 - 20 Address Lookup Functions

UNZ_GETDPBC()

void UNZ_GETDPBC (hUNZ, (LPSTR)szDPBC);

This function returns a string containing the three digits which must be appended to the ZIP+4 to create a valid
Delivery Point Bar Code (DPBC). The first two digits are derived from the address, while the last digit is a check
digit calculated over the other 11 DPBC digits. This function should be called only after successfully calling
UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested information from the
appropriate field of a parameter block reserved by the DLL for the calling task into the empty string pointed to by the
second parameter.

Note: to obtain the full 12-digit DPBC, you must append the three digits returned by this function to the nine digits
of the ZIP+4.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szDPBC - Pointer to empty string for the delivery point barcode characters

The existing contents of the string are overwritten with three ASCII digits representing the last three digits of the
DPBC for the most recent address search. The string buffer should have a minimum allocated size of 4 bytes.

Returns:

No direct result; three DPBC digits copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szDPBC;

UNZ_GETDPBC (hUNZ, (LPSTR)szDPBC);

5 - 21Address Lookup Functions

UNZ_GETCONGDIST()

void UNZ_GETCONGDIST (hUNZ, (LPSTR)szCongDist);

This function returns a string containing the two character congressional district code for the standardized address.
This function should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP().
This function copies the requested information from the appropriate field of a parameter block reserved by the DLL
for the calling task into the empty string pointed to by the second parameter.

For states with only a single representative, the congressional district is returned as 00.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCongDist - Pointer to empty string for the congressional district

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 5 bytes.

Returns:

No direct result; two congressional district characters copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szCongDist;

UNZ_GETCONGDIST (hUNZ, (LPSTR)szCongDist);

5 - 22 Address Lookup Functions

UNZ_GETCOUNTY()

void UNZ_GETCOUNTY (hUNZ, (LPSTR)szCounty);

This function returns a string containing the name of the county in which the standardized address resides. This
function should be called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This
function copies the requested information from the appropriate field of a parameter block reserved by the DLL for
the calling task into the empty string pointed to by the second parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCounty - Pointer to empty string for the county name

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 26 bytes.

Returns:

No direct result; county name characters copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szCounty;

UNZ_GETCOUNTY (hUNZ, (LPSTR)szCounty);

5 - 23Address Lookup Functions

UNZ_GETCNTYFIPS()

void UNZ_GETCNTYFIPS (hUNZ, (LPSTR)szCntyFIPS);

This function returns a three-digit numeric ASCII string containing the Federal Information Processing Standard
(FIPS) number for the county in which the standardized address resides. This function should be called only after
successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested
information from the appropriate field of a parameter block reserved by the DLL for the calling task into the empty
string pointed to by the second parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCntyFIPS - Pointer to empty string for the county FIPS code

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 4 bytes.

Returns:

No direct result; county FIPS code characters copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szCntyFIPS;

UNZ_GETCNTYFIPS (hUNZ, (LPSTR)szCntyFIPS);

5 - 24 Address Lookup Functions

UNZ_GETAREACODE()

void UNZ_GETAREACODE (hUNZ, (LPSTR)szAreacode);

This function returns a three-digit numeric ASCII string containing the most prevalent area code for the 5-digit ZIP
code in which the standardized address resides. This function should be called only after successfully calling
UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested information from the
appropriate field of a parameter block reserved by the DLL for the calling task into the empty string pointed to by the
second parameter.

Please note that in areas where multiple area codes apply to a single ZIP code, only the most prevalent area code is
returned by this function.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szAreacode - Pointer to empty string for the Area code

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 4 bytes.

Returns:

No direct result; Area code characters copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szAreacode;

UNZ_GETAREACODE (hUNZ, (LPSTR)szAreacode);

Please note that because area code and ZIP code boundaries rarely coincide and because of “overlay” area codes in
use in some parts of the country, we cannot guarantee that the area code returned by this function is accurate in all
cases.

5 - 25Address Lookup Functions

UNZ_GETTIMEZONE()

int UNZ_GETTIMEZONE (hUNZ, (LPSTR)szTimezone);

This function returns a string containing the most prevalent Time zone and the integer Daylight Savings Time (DST)
flag for the 5-digit ZIP code in which the standardized address resides. This function should be called only after
successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested
information from the appropriate fields of a parameter block reserved by the DLL for the calling task into the empty
string pointed to by the second parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szTimezone - Pointer to empty string for the Time zone

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 7 bytes.

Returns:

An integer having a value of 0 (false) or 1 (true), indicating whether that particular address participates in daylight
savings time at some time during the year, plus the Time zone code characters copied into the string buffer.

The following ASCII Time zone strings may be returned by this function:

EST - Eastern standard time
 CST - Central standard time

MST - Mountain standard time
PST - Pacific standard time
AST - Alaska standard time
HST - Hawaii standard time
EST+1 - Puerto Rico, Virgin Islands, and APO/FPO (Central America)
GMT+1 - APO/FPO (Central Europe)
PST-5 - Micronesia
PST-6 - Guam
PST-7 - APO/FPO (Pacific)

Note that all time zones are defined relative to standard time, even in those areas where daylight savings time may be
in effect. The DST flag only indicates that a particular address participates in DST at some time during the year, not
that DST in actually in effect at the moment.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szTimezone;
int Dstflag;

Dstflag = UNZ_GETTIMEZONE (hUNZ, (LPSTR)szTimezone);

5 - 26 Address Lookup Functions

UNZ_GETADDRRANGE()

void UNZ_GETADDRRANGE (hUNZ, (LPSTR)szRange);

This function returns a string containing an address range which applies to a particular ZIP+4 ZIP code. This
function should be called only after UNZ_CHECKZIP() returns a code indicating an address range (XC_ARNG or
XC_URNG). This function copies the requested information from the appropriate field of a parameter block
reserved by the DLL for the calling task into the empty string pointed to by the second parameter.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szRange - Pointer to empty string for the unit range

The existing contents of the string are overwritten with the results of the most recent ZIP+4 search. The string
buffer should have a minimum allocated size of 51 bytes.

Returns:

No direct result; address range characters copied into the string buffer.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szRange;

UNZ_GETADDRRANGE (hUNZ, (LPSTR)szRange);

For the ZIP code

84093-1679

the returned parameter is:

8801 - 8899

5 - 27Address Lookup Functions

UNZ_GETADDRESSFLAGS()

void UNZ_GETADDRESSFLAGS (hUNZ, (LPSTR)szErrTxt);

This function returns a text string containing one or more flag characters detailing the corrections and warnings from
the last address check. This function should be called only after successfully calling UNZ_CHECKADDRESS().
This function copies the requested information from the appropriate field of a parameter block reserved by the DLL
for the calling task into the empty string pointed to by the second parameter. If the last address check validated the
address with no errors or corrections (return code of 0), this function returns a null (empty) string.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szErrTxt - Pointer to empty string for the error text

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 31 bytes.

Returns:

No direct result; address correction flag characters copied into the string buffer.

Here are the flag characters and their meaning:

Z ZIP code corrected
4 ZIP+4 added or corrected
S state corrected
C city corrected
A street number and/or predirection corrected
N street name, suffix, and/or postdirection corrected
P PO Box address corrected
Secondary address (apt/ste) corrected or ignored
F Firm name not found, ignored
U PR Urb name corrected
C, S missing city-state corrected to match ZIP
D Address verified, but USPS doesn't deliver (no +4)
X Extraneous characters (ignored)

These flags appear in no particular order, and with no spacing. However, a particular flag character will appear only
once.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szErrTxt;

UNZ_GETADDRESSFLAGS (hUNZ, (LPSTR)szErrTxt);

5 - 28 Address Lookup Functions

For the address:

8861 Silverstone
Snady UT

the returned address correction flags would be:

CZ4N

which indicates that the city name, ZIP code, ZIP+4, and street name were corrected.

5 - 29Address Lookup Functions

UNZ_GETSTATS()

void UNZ_GETSTATS (hUNZ, (LPSTR)szTotal, (LPSTR)szZIP4, (LPSTR)sz5Digit, (LPSTR)szCRRT);

This function interrogates the DLL concerning the count of address records processed and the count of records
successfully verified. These counts are returned as four strings of ASCII characters, which the function copies into
the empty strings pointed to by the parameters. This function should be called only after a group of address records
has been processed by the DLL, but before terminating access to the DLL.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szTotal - Pointer to empty string into which the total count of address records processed is copied.
szZIP4 - Pointer to empty string into which the count of address records successfully ZIP+4 encoded is

copied. Unverified addresses and non-delivery addresses are NOT counted.
sz5Digit - Pointer to empty string into which the count of address records successfully encoded with a 5-

digit ZIP code is copied. Non-delivery addresses ARE counted.
szCongDist - Pointer to empty string into which the count of address records for which a congressional

district was found is copied. Normally this number is identical to szZIP4.

Note: A non-delivery address is one to which the USPS does not deliver mail, but the address is known to be
valid. A non-delivery address is assigned the proper 5-digit ZIP code, but no ZIP+4. An unverified address is one
which the DLL cannot find in the database, even using advanced address matching logic. No address is returned.

Returns:

No direct result; address processing statistics copied into string buffers.

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szTotal;
char *szZIP4;
char *sz5Digit;
char *szCRRT;

UNZ_GETSTATS (hUNZ, (LPSTR)szTotal, (LPSTR)szZIP4, (LPSTR)sz5Digit, (LPSTR)szCRRT);

5 - 30 Address Lookup Functions

UNZ_GETMATCHCOUNT()

int UNZ_GETMATCGCOUNT (hUNZ);

This function returns an integer count of the number of matching addresses found by the DLL on the previous
UNZ_CHECKADDRESS() call. This function can be used only when the return code from
UNZ_CHECKADDRESS() is XC_MULT (multiple matching records).

Parameters:

hUNZ - Handle returned from call to UNZ_INIT_EX()

Returns:

An integer count of the number of addresses which matched the address last checked using
UNZ_CHECKADDRESS().

Example:

#include "unzapi.h"

HUNZ hUNZ;
int addrcount;

addrcount = UNZ_GETMATCHCOUNT (hUNZ);

5 - 31Address Lookup Functions

UNZ_GETMATCHADDR()

int UNZ_GETMATCHADDR (hUNZ, int item, (LPSTR)szFirmHigh, (LPSTR)szPRUrb,(LPSTR)szDelLine,
(LPSTR)szLastLine);

This function returns one selected address from a group of addresses which matched the address last checked using
UNZ_CHECKADDRESS(). You must specify the address by number, in the range of 1 to n, where n is the count of
matching addresses returned by UNZ_GETMATCGCOUNT(). Use this function only after
UNZ_CHECKADDRESS() returns error code XC_MULT (multiple matching record).

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
item - number of matching address to be returned
szFirmHigh - Pointer to empty string for the firm or high-rise building name
szPRUrb - Pointer to empty string for the Puerto Rican urbanization name
szDelLine - Pointer to empty string for delivery line (street address)
szLastLine - Pointer to empty string for the last line (city-state-ZIP)

The existing contents of these strings are overwritten with the selected address information. Each string buffer
should have a minimum allocated size of 51 bytes. If the selected address contains no data for a particular field
(such as a street address with no firm name) the corresponding string is returned with a binary 0 in the first
position of the string buffer.

Returns

If there is no error, the function copies the address information for the selected address into the string buffers, and
returns TRUE (integer 1). It returns FALSE (integer 0) on any error.

Example:

#include "unzapi.h"

HUNZ hUNZ;
int item;
char *szFirmHigh;
char *szPRUrb;
char *szDelLine;
char *szLastLine;
int result;

item = 1;
result = UNZ_GETMATCHADDR (hUNZ,item,(LPSTR)szFirmHigh,(LPSTR)szPRUrb;(LPSTR)szDelLine,

(LPSTR)szLastLine);

5 - 32 Address Lookup Functions

UNZ_GETADDRCOMP()

void UNZ_GETADDRCOMP (hUNZ, (LPSTR)szNumber, (LPSTR)szPredir, (LPSTR)szStreet, (LPSTR)szSuffix,
(LPSTR)szPostdir, (LPSTR)szSecyType, (LPSTR)szSecyNbr, (LPSTR)szPOB, (LPSTR)szRR,
(LPSTR)szHC, (LPSTR)szCity, (LPSTR)szState, (LPSTR)szZIP5, (LPSTR)szZIP4);

This function returns the individual components of a standardized address. This function should be called only after
successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP(). This function copies the requested
information from the appropriate fields of a parameter block reserved by the DLL for the calling task into the empty
strings pointed to by the parameters.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szNumber - Pointer to empty string for the street number
szPredir - Pointer to empty string for the street pre direction
szStreet - Pointer to empty string for the street name
szSuffix - Pointer to empty string for the street suffix
szPostdir - Pointer to empty string for the street post direction
szSecyType - Pointer to empty string for the secondary address type
szSecyNbr - Pointer to empty string for the secondary address number
szPOB - Pointer to empty string for the PO Box number
szRR - Pointer to empty string for the rural route number
szHC - Pointer to empty string for the highway contract number
szCity - Pointer to empty string for the city name
szState - Pointer to empty string for the 2-character state code
szZIP5 - Pointer to empty string for the 5-digit ZIP code
szZIP4 - Pointer to empty string for the 4-digit ZIP code add on

The existing contents of these strings are overwritten with the results of the most recent address search. Each
string buffer should ALWAYS have a minimum allocated size of 31 bytes. If the standard address contains no
data for a particular address component the corresponding string is returned with a binary 0 (NULL) in the first
position of the string.

Returns:

No function value returned; standard address components copied into string buffers.

5 - 33Address Lookup Functions

Example:

#include "unzapi.h"

HUNZ hUNZ;
char *szNumber;
char *szPredir;
char *szStreet;
char *szSuffix;
char *szPostdir;
char *szSecyType;
char *szSecyNbr;
char *szPOB;
char *szRR;
char *szHC;
char *szCity;
char *szState;
char *szZIP5;
char *szZIP4;

UNZ_GETADDRCOMP (hUNZ, (LPSTR)szNumber, (LPSTR)szPredir, (LPSTR)szStreet, (LPSTR)szSuffix,
(LPSTR)szPostdir, (LPSTR)szSecyType, (LPSTR)szSecyNbr, (LPSTR)szPOB, (LPSTR)szRR,
(LPSTR)szHC, (LPSTR)City, (LPSTR)szState, (LPSTR)szZIP5, (LPSTR)szZIP4);

5 - 34 Address Lookup Functions

UNZ_GETSTREETCOUNT()

int UNZ_GETSTREETCOUNT (hUNZ, (LPSTR)szCityName);

This function returns the count of individual street names (including special names) in the street list for the city
specified by szCityName. This function should be called prior to calling UNZ_GETSTREETITEM() to determine
the maximum number of streets in the street list for a given city.

The city name can be anything which is valid as the “last line” of an address. This includes city and state, valid 5-
digit ZIP code, or both. If the city name is specified by a ZIP code, the street list includes all streets defined for that
city, even if some of the streets in the list do not exist within the boundaries of the specified ZIP code.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szCityName - Pointer to string containing name of city and state, or ZIP code

Returns:

If successful, returns the integer count (1 origin) of street names in the street list for the specified city. If
unsuccessful, returns an integer 0 value. An error return indicates that the city name could not be found or that the
specified city has no street list (no street names defined for that city). Successfully calling this function establishes
the city named as the “current” city for subsequent calls to UNZ_GETSTREETITEM().

Example:

#include “unzapi.h”

HUNZ hUNZ;
int streetcount;

streetcount = UNZ_GETSTREETCOUNT (hUNZ,”Chicago, IL”)

This example returns the count of streets in the street list for Chicago, and makes Chicago the “current” city for
subsequent calls to UNZ_GETSTREETITEM().

5 - 35Address Lookup Functions

UNZ_GETSTREETITEM()

int UNZ_GETSTREETITEM (hUNZ, (int) item_number, (LPSTR)szStreetName);

This function returns the actual street name specified by item_number from the list of streets for the city specified by
the last UNZ_GETSTREETCOUNT() function call. This function can be called repeatedly following a successful
call to UNZ_GETSTREETCOUNT() to build a list of streets for a particular city. The integer value “item_number”
ranges in value from 1 to n, where n is the value returned by the last call to UNZ_GETSTREETCOUNT().

If you want to build only a partial list of streets starting with a particular name or letter of the alphabet, you can use a
binary search technique to position to a particular section of the street list, then call UNZ_GETSTREETITEM() with
sequential item numbers to build the desired list of streets.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
item_number - number of street name to be returned from street list of current city
szStreetName - Pointer to empty string buffer for the street name string

Returns:

Returns the selected street name as a string in the buffer defined by the szStreetName parameter, and TRUE
(integer 1) on no error. If no street name can be returned, returns FALSE (integer 0). An error might be caused by
failure to call UNZ_GETSTREETCOUNT() prior to calling UNZ_GETSTREETITEM() or if the item_number
parameter exceeds the number of streets contained in the street list of the current city.

The name string returned by this function contains the name of the street, the street suffix, if any, and the street
postdirection, if any. Note that the predirection, if any, is NOT considered to be part of the street name. Note also
that special “street” names such as PO Box, General Delivery, Rural Routes (RR), and Highway Contracts (HC),
ARE part of the street list, and may appear as the returned street name.

Example:

#include “unzapi.h”

HUNZ hUNZ;
int item_number;
char *StreetName;
int result;

item_number = 100;

result = UNZ_GETSTREETITEM (hUNZ,item_number,StreetName);

This example returns street name 100 from the street list for the current city.

5 - 36 Address Lookup Functions

UNZ_GETERRORTEXT()

void UNZ_GETERRORTEXT(hUNZ, (LPSTR)szErrTxt);

This function returns a text string which explains the results of the last address check or ZIP code check. This
function copies the requested information from the appropriate field of a parameter block reserved by the DLL for
the calling task into the empty string pointed to by the second parameter. If the last address check or ZIP code check
produced no error this function returns an empty string.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT()
szErrTxt - Pointer to empty string for the error text

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 81 bytes.

Returns:

No direct result; error text characters copied into the string buffer.

Example:

#include “unzapi.h”

HUNZ hUNZ;
char *szErrTxt;

UNZ_GETERRORTEXT(hUNZ, (LPSTR)szErrTxt);

5 - 37Address Lookup Functions

UNZ_GETADDRESSTYPE()

void UNZ_GETADDRESSTYPE(hUNZ, (LPSTR)szAddrType);

This function returns a single-character text string which indicates the type of address record which was matched
during the last successful UNZ_CHECKADDRESS() or UNZ_CHECKZIP() function call. This function should be
called only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP().

The single ASCII character which is returned by this function is one of the following:

S - Street address
P - Post Office Box
R - Rural route or Highway Contract
H - Highrise apartment/office building
F - Firm (business)
G - General Delivery

Parameters:

hUNZ -Handle returned by the call to UNZ_INIT()
szAddrType - Pointer to empty string for the address type character

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 2 bytes.

Returns:

No direct result; address type character copied into the string buffer.

Example:

#include “unzapi.h”

HUNZ hUNZ;
char *szAddrType;

UNZ_GETADDRESSTYPE(hUNZ, (LPSTR)szAddrType);

5 - 38 Address Lookup Functions

UNZ_GETZIPTYPE()

void UNZ_GETZIPTYPE(hUNZ, (LPSTR)szZipType);

This function returns a single-character text string which indicates the type of ZIP code which was matched during
the last successful UNZ_CHECKADDRESS() or UNZ_CHECKZIP() function call. This function should be called
only after successfully calling UNZ_CHECKADDRESS() or UNZ_CHECKZIP().

The single ASCII character which is returned by this function is one of the following:

P - Post Office Box ZIP code only (no street addresses)
M - Military ZIP code (state codes AA, AE, or AP)
U - Unique ZIP code (assigned to a single business or organization)

This function can also return an empty (NULL) string, which indicates that the ZIP code type is “normal”, meaning
the ZIP code is not one of the types defined above. ZIP codes which apply to street addresses or to a combination of
street addresses and PO Boxes have no special type and return an empty string.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT()
szZipType - Pointer to empty string for the ZIP code type character

The existing contents of the string are overwritten with the results of the most recent address search. The string
buffer should have a minimum allocated size of 2 bytes.

Returns:

No direct result; address type character copied into the string buffer.

Example:

#include “unzapi.h”

HUNZ hUNZ;
char *szZipType;

UNZ_GETZIPTYPE(hUNZ, (LPSTR)szZipType);

5 - 39Address Lookup Functions

UNZ_GETFIRSTCITYNAME()

int UNZ_GETFIRSTCITYNAME (hUNZ, LPSTR szZip, LPSTR szCityName, szApproved);

This function is the first of the "first-next" pair of functions which return the city name(s) with approval flag
associated with a 5-digit ZIP code.

You should call this function once to initiate retrieval of city name(s) by ZIP code and to retrieve the first city name
associated with the ZIP code. Thereafter you should call UNZ_GETNEXTCITYNAME() to retrieve additional city
names until you reach the last city name associated with the ZIP code. You may stop retrieving city names at any
time. The city names are returned in alphabetical order.

Parameters:

hUNZ - Handle returned by the call to UNZ_INIT_EX()
szZip - Null-terminated 5-digit ASCII ZIP code string
szCityName - pointer to empty 30-character string for first city name result
szApproved - pointer to empty 10-character string for approval code result

Returns:

Returns 0 along with a valid city name and approval code if the ZIP code is verified. Returns a numerical error
code for the following cases:

1 - No more cities associated with that ZIP code
2 - Unable to verify ZIP code
3 - invalid handle or other error

The city name is a null-terminated string containing a city name associated with the ZIP code.

The approval flag is a null-terminated string containing a single ASCII character. The allowed characters are:

P - This city name is the "preferred" (default) city name, as defined by the USPS.
A - This city name is approved for mail delivery to the ZIP code.
N - This city name is not approved for mail delivery to the ZIP code.

5 - 40 Address Lookup Functions

UNZ_GETNEXTCITYNAME()

int UNZ_GETNEXTCITYNAME(hUNZ, LPSTR szCityName, szApproved);

This function is the second of the "first-next" pair of functions which return the city name(s) with approval flag
associated with a 5-digit ZIP code. The city names are returned in alphabetical order.

You should call the UNZ_GETFIRSTCITYNAME() function first to initiate the SDK to the first city name for that
ZIP code. Thereafter you should call this function to retrieve additional city names, if any, associated with that
particular ZIP code until you reach the last city name of the group. You may stop retrieving city names at any time.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
szCityName - pointer to empty 30-character string for city name result
szApproved - pointer to empty 10-character string for approval code result

Returns:

Returns 0 with a valid city name.. Returns a numerical error code for the following cases:

1 - No more cities associated with that ZIP code
3 - invalid handle or other error

The city name is a null-terminated string containing a city name associated with the ZIP code.

The approval flag is a null-terminated string containing a single ASCII character. The allowed characters are:

P - This city name is the "preferred" (default) city name, as defined by the USPS.
A - This city name is approved for mail delivery to the ZIP code.
N - This city name is not approved for mail delivery to the ZIP code.

5 - 41Address Lookup Functions

UNZ_GETFIRSTADDR()

int UNZ_GETFIRSTADDR (hUNZ, LPSTR szCityStZip, LPSTR szStreet,
 LPSTR szAddr1, LPSTR szAddr2,
 LPSTR szAddr3, LPSTR szAddr4);)

This function is the first of the "first-next" pair of functions which retrieve street address records for a given city.
These functions retrieve address records based on street name or ZIP code or both.

If you enter a city-state and no street name, you will retrieve all street address records for that city-state. If you enter
a city-state and also a valid street name you will retrieve all records for that one street (all ZIP codes). If you enter a
city-state and a 5-digit ZIP code as well, you will retrieve address records for that ZIP code only, the same as if you
had entered the ZIP code alone.

If you enter a 5-digit ZIP code (no city-state) and no street name you will retrieve all records for all streets in that
ZIP code. If you enter a ZIP code and a valid street name you will retrieve only those records for that one street with
that ZIP code.

The street name parameter is optional, but must be present and initialized to contain a NULL character in the first
byte position if there is no street name in the parameter.

You should call this function once to initiate the SDK to the first address record of the group you wish to retrieve.
Thereafter you should call UNZ_GETNEXTADDR() to retrieve additional address records until you reach the last
record of the group. You may stop retrieving records at any time.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()

szCityStZip - pointer to string containing city and state, or 5-digit ZIP code
szStreet - pointer to empty 52-byte string for the street name (optional)
szAddr1 - pointer to empty 52-byte string for the firm name result, if any
szAddr2 - pointer to empty 52-byte string for the Puerto Rican urb name result, if any
szAddr3 - pointer to empty 52-byte string for the street address range result
szAddr4 - pointer to empty 52-byte string for the city-state-zip result

Returns:

Returns 0 on a good street address record, or a numeric error code. The numeric error codes are:

1 - No more addresses
2 - Unable to verify city-state or ZIP code
4 - Unable to verify street name

5 - 42 Address Lookup Functions

UNZ_GETNEXTADDR()

int UNZ_GETNEXTADDR(hUNZ, LPSTR szAddr1, LPSTR szAddr2,
 LPSTR szAddr3, LPSTR szAddr4)

This function is the second of the "first-next" pair of functions which return address records for a given city. These
functions return address records based on street name or ZIP code or both.

You should call the UNZ_GETFIRSTADDR() function once to initiate the SDK to the first address record of the
group you wish to retrieve. Thereafter you should call this function to retrieve additional records until you reach
the last record of the group. You may stop retrieving records at any time.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
szAddr1 - pointer to empty 52-byte string for the street name (optional)
szAddr2 - pointer to empty 52-byte string Puerto Rican urb name result, if any
szAddr3 - pointer to empty 52-byte string street address range result
szAddr4 - pointer to empty 52-byte string city-state-zip result

Returns:

Returns 0 with a valid street address record, or 1 if there are no more records.

5 - 43Address Lookup Functions

UNZ_GETZIPCOUNT()

int UNZ_GETZIPCOUNT(hUNZ)

This function returns the integer count (1 origin) of all ZIP codes in the ZIP code list. The purpose of this function is
to find the maximum number of ZIP codes to be retrieved using the UNZ_GETZIPITEM() function.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()

Returns:

Returns the count of active ZIP codes.

5 - 44 Address Lookup Functions

UNZ_GETZIPITEM()

int UNZ_GETZIPITEM(hUNZ, (int)item_number, (LPSTR)szZIP)

This function retrieves one ZIP code from the list of active ZIP codes.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
item_number - Number of ZIP code to be returned from ZIP code list
szZIP - Pointer to empty string buffer for the 5-character ZIP code string

Returns:

Returns the selected ZIP code in the szZIP buffer and TRUE (integer 1) on no error. Returns 0 if the item_number
parameter is out of range.

5 - 45Address Lookup Functions

UNZ_GETZIPCITYCOUNT()

int UNZ_GETZIPCITYCOUNT(hUNZ, (LPSTR)szCity)

This function returns the integer count (1 origin) of all ZIP codes for the specified city. The purpose of this function
is to find the maximum number of ZIP codes to be retrieved using the UNZ_GETZIPCITYITEM() function.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
szCity - Pointer to string containing city and state

Returns:

Returns the integer count (1 origin) of all ZIP codes in the specified city, or 0 if the city and state cannot be found.

5 - 46 Address Lookup Functions

UNZ_GETZIPCITYITEM()

int UNZ_GETZIPCITYITEM(hUNZ, (int)item_number, (LPSTR)szZIP)

This function retrieves one ZIP code from the list of ZIP codes for a specific city.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
item_number - Number of ZIP code to be returned from selected city
szZIP - Pointer to empty string buffer for the 5-character ZIP code string

Returns:

Returns the selected ZIP code in the szZIP buffer and TRUE (integer 1) on no error. Returns 0 if the item_number
parameter is out of range.

5 - 47Address Lookup Functions

UNZ_GETCITYSTATECOUNT()

int UNZ_GETCITYSTATECOUNT(hUNZ, (LPSTR)szState)

This function returns the count of all cities for the specified state. The purpose of this function is to find the
maximum number of city names to be retrieved using the UNZ_GETCITYSTATEITEM() function.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
szState - Pointer to string containing state name or abbreviation

Returns:

Returns the integer count (1 origin) of all cities in the specified state, or 0 if the state cannot be found.

5 - 48 Address Lookup Functions

UNZ_GETCITYSTATEITEM()

int UNZ_GETCITYSTATEITEM(hUNZ, (int)item_number, (LPSTR)szCity)

This function retrieves one city name from the list of cities for a specific state.

Parameters:

hUNZ - Handle returned by call to UNZ_INIT_EX()
item_number - Number of city to be returned from selected state
szCity - Pointer to empty string buffer for the city name

Returns:

Returns the selected city name in the szCity buffer and TRUE (integer 1) on no error. Returns 0 if the
item_number parameter is out of range.

5 - 49Error Function

UNZ_ERROR()

int UNZ_ERROR();

This function returns the most recent internal error registered by the DLL. Normally this function is used after a
failure of the DLL to initialize properly (UNZ_INIT() or UNZ_INIT_EX()). However, it can also be used after any
internal error to discover the nature of the problem (memory allocation error, read error, file corrupted, etc.).

Parameters:

None.

Returns:

An integer indicating the most recent internal error registered by the DLL. These values are defined in Section 9
of this manual: DLL Return Codes.

Example:

#include "unzapi.h"

int errcode;

errcode = UNZ_ERROR();

Development Environment 6 - 1

Development Environment

The Perfect Address SDK has been successfully integrated with Visual Basic, MS Access, Visual FoxPro,
PowerBuilder, Delphi, Oracle, and other commercial and custom programs. It has been tested with custom
applications written in Microsoft VC++ V1.0, V1.52, and V4.0, as well as Borland C++ V4.5. The product has been
used successfully under Windows 95/98, Windows NT 3.5/4.0, Windows 2003, and Windows XP.

Initialization Woes

If you have trouble getting things to work after the initial installation of the SDK, be sure to try the sample programs
provided as a part of the package. The demo programs can be found in the SDK’s home folder, usually found on
drive C:

c:\pasdk\samples

The sample program named addr32 is a good test program to try first. If it doesn’t give you a fill-in-the-blank form,
then the installation is probably bad. Try reinstalling the SDK in this case. If you see a form and can enter and verify
a sample address successfully, your installation is working okay, and your troubles are elsewhere.

If your problem comes later, perhaps when you install a new version of the SDK, the problem may be that the new
database version doesn’t match the DLL version you are using. Each month we release the SDK as a complete,
matching set. The database and the DLL for each month’s version of the SDK MUST be used together as a set. This
means that you MUST properly install each version of the SDK each month. Initialization error 117 indicates a
version mismatch between the DLL and the address database.

You cannot simply insert the new CD-ROM into your CD-ROM drive each month and expect things to work just
fine. This is not the way it works! There are very good reasons for forcing the DLL and database to come from the
same working set. This avoids spurious crashes and other “anomalies” which have caused us all a lot of problems.

Make certain that you have eliminated ALL old versions of the DLL, so that you are sure that Windows is finding
only the new DLL. Remember that Windows may look in strange places to find the wrong version, and may, in some
cases, use a cached version of the old DLL even after you have replaced it with a new version. Rebooting the
machine is the only known way to avoid this problem. Thank you, Bill Gates!

Memory Leaks and Other Problems

The DLL has been extensively tested to detect and correct memory leaks within the DLL itself. The code has been
stable for some years, and is currently in use in many production environments, where such problems cannot be
tolerated. But the way you call the DLL can lead to memory leaks for which the DLL is not the cause! So before you
call us to report a suspected memory leak, look for these problems in the way you are using the DLL.

Mismatched UNZ_INIT_EX() and UNZ_TERM()

The DLL allocates memory for internal use upon each UNZ_INIT() or UNZ_INIT_EX() function call. It frees this
same memory only upon the UNZ_TERM() function call. To avoid a slow but steady loss of memory, you MUST
always call these two functions in matching pairs. It is probably best to call UNZ_INIT_EX() just once at the start of
a series of address checks, and then call UNZ_TERM() only when you have completed processing all of the
addresses in that group. This avoids the possibility of mismatched function calls. Note that these two functions are
the only two which MUST be matched.

Development Environment 6 - 2

Access Violation (GPF)

The DLL reads from and writes into string space defined within your program. The parameters you pass to the DLL
in functions such as UNZ_CHECKADDRESS() and UNZ_GETSTDADDRESS() must be properly defined in your
program before they are passed to the DLL. If your program fails to properly and fully allocate these strings (a
mistake which is, unfortunately, amazingly easy to make with Visual Basic, for example) the DLL will generate an
access violation which looks like a bug in the DLL. You MUST force the result address strings (used in results
functions such as UNZ_GETSTDADDRESS(), for example) to be at least 51 bytes in length, even if you have to
copy 51 spaces into the string before calling the DLL function.

A similar problem may occur if you fail to preserve the DLL handle parameter (returned by UNZ_INIT() and
UNZ_INIT_EX()) as a 32-bit variable. This variable MUST be defined as a LONG INTEGER (or just LONG) to
avoid trouble.

Stack Problems

Some programmers may decide that they don’t always need to use the integer result value returned from DLL
functions. That sounds innocuous, but can, in some cases, lead to stack problems. Some programming languages will
fail to pop the return value off the stack if you do not “use” it. This can lead to stack creep, eventually leading to a
crash. As a precaution against this problem, always define a variable of the proper size (usually LONG INTEGER or
just LONG) to receive the return value from all DLL functions (those which return a result, that is) even if you don’t
plan to use this value. And make sure that you define the proper return value in your function declarations, as well.

Upper Case and Mixed Case

The Perfect Address SDK supports mixed case formatting of standardized addresses (Silverstone Way instead of
SILVERSTONE WAY). Although the US Postal Service prefers the use of ALL CAPS for standardized addresses,
many people prefer to use the more "normal" mixed case form in their address databases.

To provide backward compatibility with prior versions of the product, the Perfect Address SDK DOES NOT
automatically use mixed case. To invoke mixed case, you must manually edit the following line in the SDK's
initialization file, UNZDLL.INI:

 MixedCase=1

UNZDLL.INI is usually found in the c:\windows directory.

After the change, UNZDLL.INI should look something like this:

 [UNZIPPED]
 DataPath=d:\
 CDROMPath=d:\
 ProgramPath=C:\pasdk
 MixedCase=1

If the SDK cannot find the MixedCase parameter in unzdll.ini or the MixedCase parameter is set to 0 then all address
components (including firm names and urbanization names) are converted to ALL CAPS before they are returned to
the calling program. This parameter is read only upon DLL initialization.

32-Bit Considerations

Development Environment 6 - 3

All parameters and return codes defined as "Int" as well as the HUNZ handle must be treated as 32-bit quantities.

The address database files are shared and read-only. As a result, the DLL can be used in an multitasking
environment. You should be aware, though, that the multiple invocations of the DLL do NOT share allocated
memory. This can, under some types of usage, lead to large memory requirements. This is not a problem when the
DLL executes in a typical workstation environment. This could be a problem, however, if the DLL is run (executed,
not loaded) from a server in a typical client-server environment on a network.

DLL Function Names Require Upper Case

You should be aware that case is critical in declaring DLL function names inside your program. The function names
for all DLL functions are defined in all upper case (ALL CAPS). If your program reports that it cannot find a DLL
function, the problem could be case-related.

Name mangling

As noted by Charles Petzold in Programming Windows 3.1, C++ compilers usually alter exported function names.
To prevent this, use the technique of the C header file unzapi.h to define function prototypes:

extern "C" {
...
}

The extern statement followed by "C" instructs the compiler not to mangle the function names defined within the
bracket range.

VC++ Project Options

Be certain to add UNZDLL32.LIB to the linker input libraries line under Options | Project | Linker | Input. Then
under Options | Directories add the path to the directory where you have stored UNZDLL32.DLL and
UNZDLL32.LIB to the Library Files Path.

When directly accessing the parameter block from your program, set the Options | Project | Compiler | Code
Generation structure alignment option to 1 byte. This option is not necessary if you use only the handle-based
functions.

DLL Return Codes

The Perfect Address SDK provides two primary search functions, UNZ_CHECKADDRESS() for checking an
address and UNZ_CHECKZIP() for checking a ZIP code. These two functions return an integer error code which
indicates the success or failure of the search.

The return code is a single integer value which provides limited information about the search results. Correcting an
address may require trying various changes to the address according to the rules of the address matching algorithm to
find a match in the address database. Of necessity, the normal integer return code identifies only one such change to
the address. However, it is possible to query the search engine for a more detailed analysis of the search results.

The integer value of 0 is returned by UNZ_INIT() or UNZ_INIT_EX() if the initialization function detects a fatal
error during the initialization process:

Development Environment 6 - 4

ECFATAL 0 Fatal initialization or memory allocation error

The most common cause of this problem is failure of the DLL to find the data files it needs. The paths to these files
are stored in file UNZDLL.INI, which is normally found in the Windows directory of your system. See the
Installation Chapter for a discussion of file placement and editing of UNZDLL.INI.

When the calling program receives a return value of 0 in response to UNZ_INIT() or UNZ_INIT_EX(), the DLL
initialization has failed. This means that the DLL cannot be used for address verification or ZIP verification. You
should call function UNZ_ERROR() to determine the exact cause of the initialization failure. Your program should
NOT call any other DLL functions after such an error until the cause of the error has been resolved.

The fatal error codes returned by UNZ_ERROR() are:

Error Return Error
Name Value Definition

FE00 100 CASS CD-ROM database has expired (obsolete)
FE01 101 Memory (internal buffers) allocation error
FE02 102 Unable to open data file z1.dat
FE03 103 Error reading data file z1.dat
FE04 104 Unable to open data file z2.dat
FE05 105 Error reading data file z2.dat
FE06 106 Unable to open data file z3.dat
FE07 107 Error reading data file z3.dat
FE08 108 Unable to open data file z4.dat
FE09 109 Error reading data file z4.dat
FE10 110 Unable to open data file z5.dat
FE11 111 Error reading data file z5.dat
FE12 112 Unable to open data file z6.dat
FE13 113 Error reading data file z6.dat
FE14 114 Unable to open data file z7.dat
FE15 115 Error reading data file z7.dat
FE16 116 Unable to open data file z8.dat
FE17 117 Data file z8.dat version mismatch with DLL (wrong version)
FE18 118 Unable to find DLL params (UNZDLL.INI or Registry params)
FE19 119 Unable to allocate handle memory

Development Environment 6 - 5

Return codes produced when using UNZ_INIT_EX()

The following is a list of codes returned by UNZ_CHECKADDRESS() and UNZ_CHECKZIP() when the DLL has
been initialized using UNZ_INIT_EX(). These return codes are arranged into numeric groups, making it easy for the
calling program to perform basic tests to distinguish between a valid address (0), a corrected address (<50), an
uncorrectable address (50-79), and internal runtime errors (80-99).

Group Range Meaning

no error 0 The address was verified with no changes
warnings 1 - 49 The address was corrected as indicated
critical 50 - 79 The address could not be verified or corrected
runtime 80 - 99 A non-fatal error occurred
fatal >= 100 DLL initialization failed (returned by UNZ_ERROR() only)

The following code is returned by UNZ_CHECKADDRESS() if the address was verified with no corrections.

XC_GOODADDR 0 Address was verified with no corrections

The following codes may be returned by UNZ_CHECKADDRESS() indicating that the address was corrected. If
multiple corrections are necessary to achieve an address match, only the final correction is reported as a return code
by UNZ_CHECKADDRESS(). For a detailed indication of multiple address corrections, you should use function
UNZ_GETADDRESSFLAGS() to retrieve a correction vector containing a single character for each correction
which was applied.

error return vector error
code value char meaning

XC_ZIP 1 Z, 4 ZIP code or ZIP+4 added/corrected
XC_STATE 2 S state name added/corrected
XC_CITY 3 C city name added/corrected
XC_ADDR 4 A street number and/or predirection corrected
XC_STREET 5 N street name, suffix, and/or postdirection corrected
XC_POB 6 P PO Box address corrected
XC_UNIT 7 # Secondary address (apt/ste) corrected or ignored
XC_FIRM 8 F Firm name not found, ignored
XC_URB 9 U PR Urb name corrected
XC_CS 10 C, S missing city-state corrected to match ZIP
XC_NONDEL 20 D Address verified, but USPS doesn't deliver (no +4)
XC_EXTRA 21 X Extraneous characters (ignored)
XC_GENDEL 22 G General delivery default match (town has no street delivery)
XC_5DIG 30 Z Verified only 5-digit ZIP code (UNZ_CHECKZIP())

Development Environment 6 - 6

The following codes may be returned by UNZ_CHECKADDRESS indicating that the address could not be verified
or corrected.

XC_BADCSZ 50 total city-state-zip mismatch
XC_NODATA 51 insufficient address data
XC_BADSTR 52 street name not found
XC_BADNBR 53 street number or box number out of range
XC_NOSTR 54 city has no streets (Unable to load street list)
XC_MULT 55 Multiple matching records
XC_BADURB 56 PR Urb not found in city street list
XC_FHERR 57 Firm/Highrise name conflict

The following codes may be returned by UNZ_CHECKADDRESS() or UNZ_CHECKZIP(), They indicate that a
runtime error was detected by the DLL during the verification of an address or ZIP code. These errors are not fatal,
and do not prevent further calls to the DLL. These codes may indicate errors in passing parameters by the calling
program, hardware I/O errors, or database internal content errors.

RTE00 80 invalid or missing parameter block
RTE01 81 invalid handle parameter
RTE02 82 missing function parameter
RTE03 83 z8.dat file seek error
RTE04 84 z8.dat file read error
RTE05 85 z8.dat record type error
RTE06 86 z8.dat record length error
RTE07 87 z8.dat record format error
RTE08 88 Corrupted Z1.DAT - Z7.DAT
RTE09 89 Z8.DAT file read error
RTE10 90 Z8.DAT file corrupted
RTE11 91 Z8.DAT file corrupted
RTE12 92 Z8.DAT file corrupted

This group of codes is returned only by UNZ_CHECKZIP().

XC_GOODZIP 0 Valid ZIP+4, single address found
XC_ARNG 40 Valid ZIP+4 applies to primary address range
XC_URNG 41 Valid ZIP+4 applies to secondary address range
XC_BADZIP 60 ZIP code format error (xxxxx or xxxxx-xxxx)
XC_ZNF 61 ZIP code not found

Development Environment 6 - 7

Error codes produced when using UNZ_INIT()

The following is a list of codes returned by UNZ_CHECKADDRESS() and UNZ_CHECKZIP() when the DLL has
been initialized using UNZ_INIT().

Warning - These codes are not arranged into numeric groups. NOTE: A return code of non-zero DOES NOT
NECESSARILY IMPLY THAT THE ADDRESS COULD NOT BE CORRECTED! Some return codes simply
indicate what correction was applied to the address. Column ADDR OKAY contains "Y" if the address check
successfully corrected the address, or "N" if the function could neither validate nor correct the address.

Error Return Addr Error
Name Value Okay Definition

EC01 1 Y ZIP code added/corrected (corrected)
EC02 2 Y State code added/corrected (corrected)
EC03 3 Y City name added/corrected (corrected)
EC04 4 N Total city-state-zip mismatch (uncorrectable)
EC05 5 N Insufficient address data (uncorrectable)
EC06 6 Y city name corrected to preferred city (corrected)
EC07 7 Y Street name corrected (corrected)
EC08 8 N Street not found (uncorrectable)
EC09 9 N Street or box number not found (uncorrectable)
EC10 10 Y Apt/ste not found (address accepted)
EC15 15 Y Address corrected (corrected)
EC16 16 N City-state missing (corrected)
EC17 17 Y No streets, matched to General Delivery ZIP+4
EC30 30 N Firm/Highrise name conflict
EC31 31 Y Non-delivery address (corrected, but no ZIP+4)
EC32 32 N Multiple matching records (uncorrectable)
EC33 33 Y Street name changed to preferred (corrected)
EC98 98 N PR Urb not found in city street list (uncorrectable)
EC99 99 N City has no streets (uncorrectable)

The following integer values are returned only by UNZ_CHECKZIP():

Error Return Addr Error
Name Value Okay Definition

EC20 20 N ZIP code format error
EC21 21 N ZIP code not found
EC22 22 N ZIP code applies to address range
EC23 23 N ZIP code applies to unit range
EC24 24 Y Verified 5-digit ZIP code

Errors detected by the DLL

The DLL has been programmed to return an error code to the calling program instead of displaying a Windows
Message Box. Your calling program should always watch for fatal return error codes, which indicate that some
serious failure has occurred. Continuing to call the DLL after a serious error could lead to a General Protection Fault
by the DLL.

Development Environment 6 - 8

Preferred, Approved, and Non-Approved City Names

The Perfect Address SDK address database includes almost 75,000 city and town names in common use within the
delivery areas served by the US Postal Service. However, the USPS has assigned only about 43,000 5-digit ZIP
codes. Obviously some of these 75,000 names must apply to the same 5-digit ZIP code. That is, in fact, exactly the
case: some towns or portions of a town are known to the local folk by several different names.

The USPS, in its great wisdom, has selected one (and only one) city name for each 5-digit ZIP code as the name
preferred (by the USPS, at least) for use on the last line of all mail addressed to that 5-digit ZIP code. There may be
other names which apply to that same 5-digit ZIP code. Some people object to using the "preferred" name specified
by the USPS; these people may instead use some other, locally preferred name. This can be quite confusing, and
leads to duplicate records in an address list which are hard to detect.

To deal with this problem, we have included in the database many "alias" city names, along with the ZIP codes to
which they apply. An alias city name may be "approved" by the USPS or may be "unapproved". If the name is
approved it may be used on the last line of mail even though the name is not the officially preferred name.
Unapproved names are not to be used on the last line of mail in any case.

Note that in some cases a particular city name may be preferred for some ZIP codes but an alias name (approved or
unapproved) for other ZIP codes. This frequently occurs when the exact political boundary between adjacent cities is
obscure, leading people to use the two city names interchangeably within the boundary area.

Here is an example:

ZIP Preferred Alias
CODE City Name City Name

80014 Aurora Denver (not approved)
80220 Denver Aurora (not approved)
80215 Lakewood Denver (approved}
80202 Denver (None)

ZIP codes 80014 and 80220 fall into the boundary area between Denver and Aurora, Colorado. Because the actual
political boundary between these two cities is not clearly defined, people often get confused about the correct city
name in these two areas. Although Denver is listed in the database as an alias city name for ZIP code 80014, the
USPS wants the name Denver to be changed to Aurora. Denver is "unapproved" for use on the last line for mail
addressed to ZIP code 80014. However, for mail addressed to 80215, for which Lakewood is the "preferred" name,
Denver is an "approved" alias, which CAN be used on the last line. And, of course, for ZIP code 80202, Denver is
the preferred city name. For this ZIP code there is no alias city name. Denver, then, is an example of a city name
which is preferred (80202), approved (80215), and unapproved (80014).

The general rule applied by the DLL in these cases is this: first attempt to establish a match between the city name
(preferred or alias) and the ZIP code. If the city name is preferred or approved for that ZIP code, retain the original
city name. If the city name is not approved for that ZIP code, change the city name to the preferred city name.
However, the DLL searches BOTH cities for an address match, and relies on both ZIP code and city information
contained in the address records to finally decide which city name (and ZIP code) to place on the last line.

Of course, all bets are off if the ZIP code or city name is missing from the input address. The DLL can function with
only a ZIP code or only a city-state, but must resort to other, slower search methods to validate such an address.

Address Matching Rules

Development Environment 6 - 9

The DLL follows US Postal Service address matching rules to find a correct address match. The fundamental rule is
called the "one component failure rule". In simple terms, this rule permits an address match if and only if no more
than a single delivery address component mismatch exists, where a "component" is defined as a pre-directional,
street name, street suffix, or a post-directional.

This address:

250 E CENTER ST N

has all four address components. If one component can be added, changed, or deleted to achieve a unique match, the
DLL is allowed to correct the address and return the ZIP+4. Under USPS rules, if more than one component is
incorrect, no match is allowed. If adding, changing or deleting a single component results in multiple matches, no
match can be returned. The algorithm calls for adding a suffix first, before adding a directional. If there is no match,
change or delete the suffix. Finally, change or delete a directional. Swapped directionals are NOT considered to be a
component failure.

If there is no exact address match within the normal city, the DLL applies the "one component failure rule" within
the input ZIP code. If there is still no match, the DLL applies the "one component failure rule" to all addresses within
the postal finance number. If there is still no match, the address is rejected.

The DLL uses an advanced phonetic matching algorithm to match city and street names. It also uses tables of
common abbreviations to enhance matching of city and street names.

Multiple Address Matches

In applying the "one component failure rule" the DLL often finds multiple addresses which satisfy the address
matching criteria. However, the USPS address matching rules prohibit the DLL from making a "guess" as to which
address is correct.

For example, given this address:

250 FOREST

and applying the "one component failure rule", the DLL might find these potential matches:

250 FOREST AVE
and

250 FOREST DR

Either address could be correct, and the DLL has no way to resolve the conflict. USPS rules call for the address to be
rejected. In general, any time the DLL applies the "one component failure rule" and finds multiple potential matches,
the input address is rejected. In this case the DLL returns the error code XC_MULT (multiple matching records).

To help you resolve address conflicts such as the example above, the DLL provides two functions which permit your
program to examine the matching records and take some appropriate action.

UNZ_GETMATCHCOUNT() returns an integer count of the number of matching addresses found by the DLL on
the previous UNZ_CHECKADDRESS() call. This function can be used only when the return code from
UNZ_CHECKADDRESS() is XC_MULT (multiple matching records).

Development Environment 6 - 10

UNZ_GETMATCHADDR() returns one selected address from the group of matching addresses. You must specify
the address by number, in the range of 1 to n, where n is the number of matching addresses returned by
UNZ_GETMATCHCOUNT().

Private Mailboxes

Private Mailbox, PMB, is a new USPS designation for mail sent to a mailbox at a Commercial Mail Receiving
Agency (CMRA), such as Mailboxes Etc. The PMB designation must be used in place of other secondary address
types, such as BOX, STE or APT. The USPS now rejects mail sent to a CMRA with BOX, STE, or APT as the
secondary address type. The PMB number can also be placed on the line above the street address line.

Acceptable address formats are these:

John Smith
8861 Silverstone Way PMB 200
Sandy UT 84093

or
John Smith
PMB 200
8861 Silverstone Way
Sandy UT 84093

